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Summary of professional accomplishments

Geometric tomography is a branch of mathematics dealing with the retrieval of information about
a high-dimensional geometric object from its low-dimensional characteristics [11]. Most often these are
either its sections by hyperplanes or its projections (shadows) on hyperplanes. The subject naturally
overlaps with convex geometry and employs many of its tools. In my research, I follow the idea of
associating with every low-dimensional characteristic an algebraic object (e.g. the group of its affine
symmetries). Assuming that the hypersurface is sufficiently smooth, this allows us to find certain con-
straints satisfied by its Taylor polynomial and thus rephrase a geometric assumption in the language
of (non)commutative algebra. Such a homological approach usually requires combining many different
fields of mathematics, ranging from general topology and abstract algebra to partial differential equations
to differential and algebraic geometry.

My dissertation consists of three independent chapters. Each of them illustrates an application of
the previously described general paradigm to some particular problem in geometric tomography. I will
outline them in the following sections.

1. On star-convex bodies with rotationally invariant sections

A compact domain K ⊂ Rn, n ≥ 1, is called a body of affine revolution if its symmetry group
contains a subgroup affinely conjugated to O(n − 1,R). In the first chapter of the dissertation, we will
consider bounded domains K ⊂ Rn, n ≥ 4, whose sections by codimension 1 hyperplanes are bodies of
affine revolution. Our main result is the following characterization theorem:

Theorem I.1.2. Let K ⊂ Rn, n ≥ 4, be an origin-symmetric star-convex body. Assume that the
boundary ∂K is a submanifold of class C3. If every hyperplane section of K passing through the origin
is a body of affine revolution, then K itself is a body of affine revolution.

At the root of this problem lies the celebrated isometric conjecture of S. Banach:

Question 1.1 (cf. [5, Remarques au chapitre XII, propriété (5)]). Let Bn be a Banach space of finite
dimension n and let k be a natural number satisfying the inequalities 1 < k < n. If all the k-dimensional
subspaces of Bn are isometrically isomorphic to each other, is Bn a Hilbert space?

After more than five decades since the seminal work of H. Auerbach, S. Mazur, and S. Ulam [4], who
settled Question 1.1 for n = 3, and M. Gromov [12], who generalized their approach and settled Ques-
tion 1.1 for odd dimensions n, the idea of reducing the structure groups of certain fiber bundles was
taken up again by L. Montejano et al. [7, 8, 15, 16]. Finally, in [7] the authors settled Question 1.1
for even dimensions n of the form 4k + 2 ≥ 6, n ̸= 134. The key element of their proof was to show that
all the hyperplanar sections of the unit ball of Bn must be bodies of affine revolution, which prompted
them to ask the following, somewhat more general question:
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Question I.1.1 (cf. [7, Remark 2.9]). Let K ⊂ Rn, n ≥ 4, be a convex body containing the origin
O in its interior. If every hyperplane section of K passing through O is a body of affine revolution, is K

necessarily a body of affine revolution?

Theorem I.1.2 gives a positive answer to Question I.1.1 under certain restrictions on K.

The idea of the proof is rather elementary and follows the paradigm described in the introduction.
For any point p on ∂K at which the second fundamental form of ∂K is positive definite, we normalize
the extrinsic coordinate system so that ∂K is locally parametrized as a graph of some function of the
form

f(x) = 1
2 ⟨x, x⟩ + O(∥x∥)3.

Now, for any hyperplane Hn−2 ∈ Gr(n − 2, Tp∂K), the restriction f |Hn−2 is a parametrization of a
certain section of K, which by assumption is invariant under affine action of O(n − 1,R). We show
that there exists a hyperplane Hn−3 ∈ Gr(n − 3, Hn−2), being precisely the hyperplane of revolution,
such that the 3rd order Taylor polynomial of f |Hn−3 vanishes. It follows that there exists a hyperplane
Hn−2

0 ∈ Gr(n − 2, Tp∂K) such that the 3rd order Taylor polynomial of f |Hn−2
0

vanishes. Interestingly,
the proof of the latter for n = 4 uses a topological argument and is essentially different from the proof
for n ≥ 5 based on algebraic geometry.

This algebraic fact is a key to comprehending the geometry of K. For there exists an open sub-
set V ⊆ Gr(n − 2, Tp∂K) such that for every Hn−2 ∈ V , K ∩ ⟨Hn−2, O⟩ is invariant under the ac-
tion of O(n − 3,R) with the hyperplane of revolution Hn−2 ∩ Hn−2

0 . Further, we show that either
V = Gr(n−2, Tp∂K) or the 3rd order Taylor polynomial of f vanishes, again considering the cases n = 4
and n ≥ 5 separately. Finally, if the first case holds on an open subset of ∂K, we directly construct a
group isomorphic to O(n − 1,R) that acts on K. Otherwise, we obtain an intrinsic differential equation
on ∂K, which by the classical result of Berwald [18, Theorem II.4.5] implies that K is an ellipsoid.

Presumably, the superfluous symmetry assumption can be disposed of, but this will significantly
complicate any proof along our lines and most likely it will also lose its nice geometric flavor to the
intensive computation of general affine differential invariants. Nevertheless, this direction seems promis-
ing. The smoothness assumption is an inherent element of our argument and therefore can not be easily
relaxed.

One element of the proof is the following lemma, interesting on its own, which may be considered a
counterpart of [7, Lemma 2.3]:

Lemma I.4.5. A body of affine 2-revolution K ⊂ Rm, m ≥ 4, admitting three different codimension
2 hyperplanes of affine revolution, admits a codimension 1 hyperplane of affine revolution (i.e. is a body
of affine 1-revolution).

We state then a more general question:

Question I.4.7. Does a compact domain K ⊂ Rm, m ≥ 4, admitting k + 1 different codimension k

hyperplanes of affine revolution, admit a codimension k − 1 hyperplane of affine revolution, 0 < k < m?

To our best knowledge, the answer is not known.

The chapter was already published as an article [21].
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2. Differential characterization of quadratic surfaces

Let f ∈ W 3,1
loc (Ω) be a function defined on a connected open subset Ω ⊆ R2. In the second chapter of

the dissertation, we will show that its graph is contained in a quadratic surface if and only if f is a weak
solution to a certain system of 3rd order partial differential equations. Our main result is the following
theorem:

Theorem II.1.2. Let f ∈ W 3,1
loc (Ω) be a function defined on a connected open subset Ω ⊆ R2. Suppose

that the Hessian determinant of f is not non-positive. Then f is a weak solution to the system of partial
differential equations

(II.1.3)
f (3,0)f (0,2)2

− 3f (1,2)f (2,0)f (0,2) + 2f (0,3)f (1,1)f (2,0) = 0,

f (0,3)f (2,0)2
− 3f (2,1)f (0,2)f (2,0) + 2f (3,0)f (1,1)f (0,2) = 0

if and only if its graph is contained in a quadratic surface.

The assumption on the Hessian determinant is not purely technical, as the following holds:

Theorem II.1.4. Let f ∈ W 3,1
loc (Ω) be a function defined on a connected open subset Ω ⊆ R2. Suppose

that the Hessian determinant of f is non-positive. Then f is a weak solution to the system of partial
differential equations (II.1.3) if and only if Ω contains a countable sum of disjoint open connected subsets
Ωi such that:

(1) on each Ωi the graph of f is contained in either:
(a) a doubly-ruled surface1, or
(b) a developable surface2, or
(c) a Catalan surface3 with directrix plane XZ, or
(d) a Catalan surface with directrix plane Y Z,

(2) the union
⋃

Ωi is dense in Ω.

Such a characterization of quadratic surfaces of positive Gaussian curvature as the only solutions to
certain partial differential equations without boundary conditions turns out to be helpful when applying
the paradigm described in the introduction to convex geometry. Theorem II.1.2 acts then as a bridge
between intrinsic and extrinsic differential equations on ∂K. On the one hand, to prove that K is
a quadric, it is enough to check that a local parametrization of ∂K satisfies two particular partial
differential equations formulated in the extrinsic coordinate system, which usually does not require the
use of any advanced tools of affine differential geometry. On the other hand, it is enough to verify this
condition pointwise in any local coordinate system, as Theorem II.1.2 implies the following corollary:

Corollary II.5.9. Let S ⊂ R3 be a convex surface of class C3 such that for every x ∈ S there is a
quadratic surface having 3rd order contact with S at x. Then S is itself a quadratic surface.

Problems of this type were considered already by W. Blaschke, who proved that conics are the only
planar curves with constant equiaffine curvature. Since in this simple case the equiaffine curvature can
be easily expressed in the extrinsic coordinate system, we get the following equivalent formulation:

Theorem 2.1 ([6, p. 18]). Let f ∈ C5(Ω) be a function defined on a connected open subset Ω ⊆ R.
Then f is a solution to the ordinary differential equation

9f ′′(x)2f (5)(x) − 45f ′′(x)f (3)(x)f (4)(x) + 40f (3)(x)3 = 0

1A ruled surface that contains two families of rulings.
2A ruled surface having Gaussian curvature K = 0 everywhere.
3A ruled surface all of whose rulings are parallel to a fixed plane, called the directrix plane of the surface.
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if and only if its graph is contained in a conic.

Afterward, it was proved by H. Maschke (for analytic surfaces), G. A. Pick (for surfaces), and L.
Berwald (for hypersurfaces) [18, Theorem 4.5] that hyperquadrics can be characterized by vanishing
of the certain intrinsically defined cubic form [18, ch. II, s. 4]. However, this time it can hardly be
expressed in the extrinsic coordinate system. It is also unclear what minimal smoothness we need to
assume. Theorem II.1.2 answers both of these issues, by providing explicit equations formulated in the
extrinsic coordinate system, which are minimal in terms of the order of differentiation and the assumed
smoothness of the solution. It gives also an alternative proof of Corollary II.5.9, which is a classical result.

This chapter is quite digressive and throughoutly explores many interesting aspects both of the
problem itself and of techniques used to solve it. At the beginning, we observe that a graph of a function
f is contained in a quadratic surface if and only if the set of functions

(II.3.2)
{

x2, xy, xf(x, y), y2, yf(x, y), f(x, y)2, x, y, f(x, y), 1
}

is linearly dependent. That is how the concept of generalized Wronskian for functions of several variables
enters play. For it is clear that each generalized Wronskian of (II.3.2) may be viewed as a polynomial
partial differential equation satisfied by a local parametrization of any quadratic surface. By a direct
construction, we show that the system (II.1.3) is minimal in the sense that the left-hand sides form a
reduced Gröbner basis of the differential ideal of all polynomial partial differential equations satisfied by
local parametrizations of quadratic surfaces. This fact is useful on its own, as it reduces the problem of
checking if the solution space of such an equation contains parametrizations of all quadratic surfaces to
the well-studied problem of ideal membership (see e.g. [9, ch. 2, s. 8]). After showing that (II.1.3) enjoys
the smoothing property, which follows from the tricky fact that the specially devised functions

(II.4.2)

u(x, y) := f (2,0)(x, y) − f (0,2)(x, y)∣∣f (0,2)(x, y)f (2,0)(x, y) − f (1,1)(x, y)2
∣∣3/4 ,

v(x, y) := 2f (1,1)(x, y)∣∣f (0,2)(x, y)f (2,0)(x, y) − f (1,1)(x, y)2
∣∣3/4 ,

turn out to satisfy the Cauchy-Riemann equations, we may finally apply the delicate result of K. Wols-
son [20, Theorem 2] to deduce the linear dependence of a set of functions from the vanishing of their
generalized Wronskians.

To perform lengthy computations, we employ a widely used technical computing system Wolfram
Mathematica [13]. Nevertheless, the proof remains human-surveyable.

3. On separably integrable symmetric convex bodies

An infinitely smooth symmetric convex body K ⊂ Rd is called k-separably integrable if its k-
dimensional isotropic volume function VK,H(t) = Hd({x ∈ K : dist(x, H⊥) ≤ t}) can be written as a
finite sum of products in which the dependence on H ∈ Gr(k,Rd) and t ∈ R is separated. In the third
chapter of the dissertation, we will obtain the complete classification of such bodies. Our main result is
the following theorem:

Theorem III.2.6. Let K ⊆ Rd be an origin-symmetric convex body with infinitely smooth boundary
∂K. If K is locally k-separably integrable, then d − k is even and K is an ellipsoid or d − k is odd and
K is a Euclidean ball.
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The history of the problem goes back to I. Newton, who argued in Principia that the areas of
segments of planar convex bodies with an infinitely smooth boundary cut off by straight lines are not
expressible in terms of algebraic equations [17, s. VI, Lemma XXVIII]. On the 300th anniversary of
the first publication of Principia, V. I. Arnold asked several related questions in his famous seminar
at Moscow State University [3, 1987-14, 1988-13, 1990-27]. Only after almost three decades, V. A.
Vassiliev [19] showed that if K ⊂ Rd is a bounded domain in an even-dimensional space then the volume
V ±

K,H(t) cut off by a hyperplane parallel to H ∈ Gr(d − 1,Rd) at distance ±t ∈ R from the origin is not
an algebraic function of H and t, thus extending Newton’s result to arbitrary even-dimensional space.
Soon after M. L. Agranovsky introduced the concept of polynomial integrability and showed that in an
even-dimensional space, the volume V ±

K,H(t) is not a polynomial in t [1, Theorem 2]. On the one hand,
he constrained the dependence of V ±

K,H(t) on t, but on the other relaxed the dependence on H. The
idea was further developed by A. Koldobsky, A. S. Merkurjev, and V. Yaskin, who showed that if K is
polynomially integrable then the space is odd-dimensional and K is an ellipsoid [14, Proposition 3.1,
Theorem 3.7]. Finally, M. Agranovsky, A. Koldobsky, D. Ryabogin, and V. Yaskin proved a similar
result assuming that V ±

K,H(t) is of the more general form P (ξ, t)
√

Q(ξ, t), where P, Q are polynomials
in t and deg Q = 2 [2]. If we restrict ourselves to symmetric convex bodies, Theorem III.2.6 contains the
results of [14] as a special case. However, the improvement in [2] goes in a completely different direction.
Nevertheless, Theorem III.2.6 seems to indicate the crux of polynomial integrability. Namely, it is not
so much the rigidity of polynomials that makes [14, Theorem 3.7] hold as the fact that the linear space
of polynomials of fixed degree is finite-dimensional. This phenomenon prompts us to ask the following
question, which contains all the aforementioned results, including ours:

Question III.2.7. Let K be a bounded domain in Rd with an infinitely smooth boundary ∂K. If the
k-dimensional isotropic volume function VK,H(t) can be locally expressed in the form

VK,H(t) = Φ(a1(H), a2(H), . . . , am(H), b1(t), b2(t), . . . , bn(t))

on some open neighborhood of Gr(k,Rd)×{0}, where Φ : Rm+n → R is algebraic and ai : Gr(k,Rd) → R,
bi : [0, ∞) → R are smooth, is K necessarily an ellipsoid?

To our best knowledge no counterexample is known so far.

Our proof begins along the lines of [14, Theorem 3.7]. We rewrite the assumption in terms of the
Fourier transform of the iterated Laplace operator applied to the powers of the Minkowski functional
∥ · ∥K to obtain a family of equations of the form

(3.1)
n∑

i=0
cs,i∆i∥x∥−d+2s+2i+k

K = Ps(x),

where n ∈ N is a fixed constant, cs,i are some scalars and Ps(x) is a homogeneous polynomial of degree
−d + 2s + k. Using properties of the Fourier transform and (simple but tedious) linear algebra, we infer
that the sequence {Ps(x)∥x∥d−2s−k

K }s≥⌈d/2⌉ spans a finite-dimensional subspace of C(Rd,R). Further,
we prove that only finitely many elements of {Ps(x)}s≥⌈d/2⌉ are zero, unless K is a Euclidean ball. This
way we pass from differential to algebraic equations and reduce the problem to solving an infinite system
of polynomial equations in ζ := ∥x∥−2

K over the rational function field R(x). For this purpose, we employ
techniques from field theory. Denote the minimal polynomial of ζ by

µζ(λ) = µζ,0 + µζ,1λ + . . . + µζ,m−1λm−1 + λm,
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where µζ,i ∈ R(x) and m = [R(x, ζ) : R(x)] is the degree of a field extension. We observe that mul-
tiplication by ζ defines an R(x)-linear operator Tζ : R(x, ζ) → R(x, ζ). Using the well-known Cayley-
Hamilton theorem we deduce that the sequence {Ps(x)[Tζ ]2s}s≥⌈d/2⌉ spans a finite-dimensional subspace
of R(x)m×m, where [Tζ ] ∈ R(x)m×m denotes the matrix of Tζ in certain basis.

As the problem has been finally reduced to a question about the rational functions of several variables,
we may now apply the fine tools of valuation theory, which is known to form a solid link between algebra
and analysis. Let p ∈ R[x] be any irreducible polynomial. By a classical result [10, Theorem 3.1.2], we
extend the p-adic valuation vp from R(x) to the splitting field of the characteristic polynomial µζ . Using
a trick involving Viète’s formulas for the characteristic polynomial of [Tζ ]2s, we show that

vp(Ps) = −svp(µζ,m−i)/i + O(1)

for every irreducible polynomial p ∈ R[x], whence µζ,m−i and µ
i/m
ζ,0 are associated, i.e.

µζ,m−i = um−iµ
i/m
ζ,0

for some um−i ∈ R \ {0}. Hence µ
−1/m
ζ,0 ζ is equal to a root r ∈ R of a polynomial

u0 + u1

(
µ

−1/m
ζ,0 ζ

)
+ . . . + um−1

(
µ

−1/m
ζ,0 ζ

)m−1
+
(

µ
−1/m
ζ,0 ζ

)m

with constant coefficients, which means that

∥x∥K = ζ−1/2 = (rmµζ,0)−1/(2m)

is a root of order 2m of some homogeneous polynomial (rmµζ,0)−1 of degree 2m.

This is not yet the end, as we want to show that actually m = 1. However, it is not as straightforward
as it would seem, since the reductions we have made along the way were non-equivalent. Hence to get
the desired conclusion, we need to go back to the very beginning of our argument. Slightly abusing the
notation, we define ∥x∥K =: ζ with ζ2m =: h(x) being a homogeneous polynomial of degree 2m and
observe that A =: R(x, ζ) may be viewed as a graded algebra

A =
⊕

i∈C2m

Ai, Ai =: R(x)ζi,

where the index set is the cyclic group C2m. Further, we argue that the Laplace operator ∆ defines a
graded endomorphism of A, i.e. for every function f ∈ Ai, i ∈ C2m, we have ∆f ∈ Ai. Finally, we
specially devise an infinite family of equations of the form (3.1) such that the left-hand sides clearly
belong to either A1 or A2, unless m = 1. Now, since we otherwise know they are polynomials (i.e. they
belong to A0), they must all be zero. However, recall that only finitely many elements of {Ps(x)}s≥⌈d/2⌉

are zero, unless K is a Euclidean ball.

Most likely the symmetry assumption is superfluous. Unfortunately, exactly as in [14], the non-
symmetric case is essentially more difficult and requires even more involved algebraic arguments.

The chapter is based on a joint work with V. Yaskin.
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CHAPTER I

On star-convex bodies with rotationally invariant sections

We will prove that an origin-symmetric star-convex body K with sufficiently smooth boundary and
such that every hyperplane section of K passing through the origin is a body of affine revolution, is
itself a body of affine revolution. This will give a positive answer to the recent question asked by G.
Bor, L. Hernández-Lamoneda, V. Jiménez de Santiago, and L. Montejano-Peimbert, though with slightly
different prerequisites.

I.1. Introduction

After more than five decades since the seminal works of H. Auerbach, S. Mazur and S. Ulam [1], A.
Dvoretzky [5], M. Gromov [6] and V. Milman [11], the isometric conjecture of S. Banach again attracted
the attention of researchers, launching a whole avalanche of papers by L. Montejano et al. [3, 4, 14, 15]
and recently also by S. Ivanov, D. Mamaev and A. Nordskova [8]. As it was already known that
algebraic topology alone would not suffice, more sophisticated methods were developed. For instance, in
[3] the authors (G. Bor, L. Hernández-Lamoneda, V. Jiménez de Santiago and L. Montejano-Peimbert)
showed that under assumptions of the conjecture (namely, that K is a symmetric convex body, all of
whose hyperplanar sections are affinely equivalent) supplemented with dimension constraints having its
origins in algebraic topology, all the hyperplanar sections of K must be bodies of affine revolution (cf.
Definition I.2.2). This observation prompted them to ask the following, somewhat more general question:

Question I.1.1 (cf. [3, Remark 2.9]). Let K ⊂ Rn, n ≥ 4, be a convex body containing the origin
O in its interior. If every hyperplane section of K passing through O is a body of affine revolution, is K

necessarily a body of affine revolution?

Note that the reverse implication is quite straightforward (cf. [3, Lemma 2.4]). Moreover, the authors
proved in [3, Theorem 1.4] that at least one hyperplane section of such a symmetric convex body must be
an ellipsoid, which is an obvious necessary condition. Compared to the initial problem of S. Banach, they
decided to keep the assumption that K is convex while forgoing the assumption that K is symmetric.
In what follows, we will prove a theorem in the same spirit, but with slightly different prerequisites:

Theorem I.1.2. Let K ⊂ Rn, n ≥ 4, be an origin-symmetric star-convex body. Assume that the
boundary ∂K is a submanifold of class C3. If every hyperplane section of K passing through the origin
is a body of affine revolution, then K itself is a body of affine revolution.

Our argument is rather elementary. It is built mainly upon the tools of differential geometry and
linear algebra. Although occasionally we will need to use some more involved facts from other fields like
algebraic topology or commutative algebra, they will hide most of the difficulty within themselves. Un-
like in [3], we forgo the assumption that K is convex while keeping the assumption that K is symmetric.
Moreover, to apply our method we need the boundary of K to be sufficiently smooth. Presumably, the
superfluous symmetry assumption can be disposed of, but this will significantly complicate any proof
along our lines and most likely it will also lose its nice geometric flavor to the intensive computation
of general affine differential invariants (cf. Remark I.4). The smoothness assumption seems to be an
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inherent element of our argument and therefore can not be easily relaxed.

A natural question arises if the assumption n ≥ 4 is indeed necessary. A compact domain L ⊆ Rn−1

is a body of affine revolution if its symmetry group contains a subgroup affinely conjugated to O(n−2,R)
(cf. Definition I.2.2). In dimension n = 3, Question I.1.1 has a different flavor because we assume merely
that every planar section of K passing through the origin admits an affine reflection, which is satisfied
e.g. when K is a cube (every central planar section of a cube is affinely equivalent to either a square
or a regular hexagon, both of which are axially symmetric). Therefore the statement is no longer true
unless we make some additional assumptions (see e.g. [13, §2]). The right counterpart of Question I.1.1
in dimension 3 seems to be an affine version of a similar question asked by K. Bezdek:

Question I.1.3 (cf. [2, §10]). Let K ⊂ R3 be a convex body. If every planar section of K [not
necessarily passing through the origin ed.] admits an affine reflection, is K necessarily a body of affine
revolution?

To the author’s best knowledge, it remains open. Nevertheless, techniques similar to those presented
in this paper may be applied also to Question I.1.3, but then they will most likely require higher-order
smoothness of the boundary.

I.2. Definitions and basic concepts

We adopt the notation from [3].

Definition I.2.1. A compact domain K ⊂ Rn, n ≥ 1, is called star-convex if there exists O ∈ K

such that for every x ∈ K the entire line segment from O to x is contained in K. A star-convex body is
called symmetric if it is centrally symmetric with respect to O.

Remark. Actually, the same proof of Theorem I.1.2 with minor technical improvements works for
general compact domains. However, we will intentionally refrain from these topological considerations,
so as not to overshadow the main idea.

Definition I.2.2. A compact domain K ⊂ Rn, n ≥ 1, is called a body of affine k-revolution if its
symmetry group contains a subgroup G affinely conjugated to O(n − k,R), 0 < k < n. The ambient
space Rn can be viewed as a direct sum H ⊕L of a linear space H and an affine space L, where H (called
the hyperplane of affine revolution) is an irreducible representation space of G of dimension n − k and
L (called the hyperaxis of affine revolution) is a common fixed point subspace of G of dimension k. By
body (resp. hyperplane, axis) of affine revolution, we will mean a body (resp. hyperplane, axis) of affine
1-revolution unless expressly stated otherwise.

Remark. If we additionally assume that K is symmetric, then the center of symmetry O must be
a fixed point of any affine symmetry of K. In particular, if K is a star-convex body of affine revolution,
the axis of affine revolution must pass through O. Moreover, since every section of K with a hyperplane
passing through O is again a star-convex body of affine revolution symmetric with respect to O, the axis
of affine revolution of all such hyperplanar sections must likewise pass through O.

Remark. Note that all these objects are defined (and will be used) in a general affine setting. In
particular, the symmetry group of K is a compact subgroup of GL(n,R), but not necessarily of O(n,R).

Denote the submanifold ∂K by Mn−1. Let p ∈ Mn−1 be any point with positive definite second
fundamental form of Mn−1. After applying a suitable affine map we may assume that p = 0Rn , O =
0Rn + ên and TpM = 0Rn + ⟨ên⟩⊥, where ên stands for the nth standard unit vector (fig. I.2.3).
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In this coordinate system, we represent the neighborhood of p in Mn−1 as a graph of some function
f : TpMn−1 ⊃ U → R of class C3, which must be of the form

f(x) = O(∥x∥)2

in Big-O notation. Since we assumed that the second fundamental form of Mn−1 is positive definite at
p, after applying a suitable linear change of coordinates in the domain we may further assume that

f(x) = 1
2 ⟨x, x⟩ + O(∥x∥)3.

The above will be called the canonical parametrization of Mn−1 at p. Note that it is unique up to
an orthogonal change of coordinates in the domain. Moreover, observe that the restriction of f to any
codimension 1 hyperplane H ∈ Gr(n − 2, TpMn−1) is the canonical parametrization of the hyperplanar
section Mn−1 ∩ aff({H, O}) at p.

N
n−2

TpN
n−2 = H

O = 0Rn + ên

p = 0Rn

Mn−1

TpMn−1 = 0Rn + ⟨ên⟩⊥

Figure I.2.3. The canonical parametrization of Mn−1 at p

Definition I.2.4. Let f : Rm → R be a function of class C3. The homogeneous part of degree 3 of
its series expansion is called the cubic form of f and will be denoted by cf .

Remark. In the course of the proof, we will consider almost exclusively points with positive definite
second fundamental form of Mn−1. However, we do not need to assume that Mn−1 is strongly convex.
Indeed, every compact hypersurface contains at least one such point, from which all the local properties
will eventually spill over the entire set.
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I.3. Hypersurfaces of affine revolution

Although the original hypersurface is (n − 1)-dimensional, most of the time we will be investigating
(n − 2)-dimensional hypersurfaces of affine revolution since their geometry plays a key role in the proof.
Let

g : TpNn−2 ⊃ U → R, g(x) = 1
2 ⟨x, x⟩ + O(∥x∥)3

be the canonical parametrization of some hyperplanar section Nn−2 of Mn−1 at p (fig. I.2.3), being
a hypersurface of affine revolution. From now henceforth, by action of a linear group we always mean
the action of its affine matrix representation on a specified affine subspace of Rn, usually clear from
the context. By definition, Nn−2 is invariant under action of O(n − 2,R). Denote by Gp the isotropy
group of p, i.e. the set of affine symmetries of Nn−2 which does not change p. If p is already a fixed
point of O(n − 2,R) then Gp is affinely conjugated to O(n − 2,R), otherwise Gp is affinely conjugated to
O(n − 3,R). Without loss of generality, we may choose U to be invariant under Gp.

ℓ

V H

O = 0Rn−1 + ên−1

p = 0Rn−1

Nn−2

TpNn−2 = 0Rn−1 + ⟨ên−1⟩⊥

Figure I.3.1. The canonical parametrization of Nn−2 at p

Let A ∈ Gp be any affine symmetry of Nn−2 which does not change p. Note that in our coordinate
system, A may be regarded as a linear map. Since O is the center of symmetry of Nn−2, it must be
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a fixed point of A. Thus ên−1 is an eigenvector of A with eigenvalue +1. Moreover, the hyperplane
⟨ên−1⟩⊥ it tangent to Nn−2 at p and thus it must be an invariant subspace of A. It follows that the
matrix representation of A in our canonical coordinate system is of the form

[A] =


[B]

0
0
...
0

0 0 · · · 0 1


for some B ∈ GL(n − 2,R). Now, for every point x ∈ U there exists a point x̃ ∈ U such that

[A] .

(
x

g(x)

)
=
(

x̃

g(x̃)

)
,

which reads

(I.3.2) g(Bx) = g(x).

In particular, [B] must preserve the standard quadratic form, in which case it is an orthogonal matrix.
Thus A itself must be an orthogonal map, which means that in our coordinate system, Gp is actually a
subgroup of O(n − 2,R).

Claim I.3.3. It follows immediately from (I.3.2) that the canonical parametrization g is invariant
under action of Gp on its domain U ⊂ TpNn−2, i.e. g ◦ A|U ≡ g for every A ∈ Gp. □

Claim I.3.4. The tangent space TpNn−2 may be viewed as a (n−2)-dimensional representation space
of Gp. If Gp ≃ O(n − 3,R), then TpNn−2 admits an orthogonal decomposition H ⊕ V into irreducible
representations’ spaces, where H is a codimension 1 hyperplane of revolution and V is a dimension 1
common fixed-point subspace (fig. I.3.1). In particular, the cubic form cg vanishes on H. Indeed, cg|H
must vanish at some direction and by Claim I.3.3 this carries over to all the other directions as well. On
the other hand, if Gp ≃ O(n − 2,R), then TpNn−2 is already an irreducible representation’s space of Gp

and thus cg vanishes identically (again, by the very same argument). The latter is necessarily the case
when Nn−2 is an ellipsoid. □

Let us recall a simple fact from the original paper [3]:

Lemma I.3.5 ([3, Lemma 2.3]). A symmetric body of affine revolution K ⊂ Rm, m ≥ 3, admitting
two different hyperplanes of affine revolution, is an ellipsoid.

Now we are ready to prove the following key lemma, which will eventually enable us to figure out
the geometry of Mn−1:

Lemma I.3.6. In the above setting, there exists a codimension 1 hyperplane H ∈ Gr(n − 2, TpMn−1)
such that the cubic form cf |H is identically zero (i.e. cf is reducible).

Interestingly enough, the proof for n = 4 and n ≥ 5 will be essentially different. In the first case, we
need an argument from general topology, which holds only in even dimensions n. In the second case, we
introduce an argument from algebraic geometry, which holds only in dimensions n ≥ 5.

Proof of Lemma I.3.6 for n ≥ 5. Suppose that cf is irreducible. Theorem of Bertini [7, Theorem
17.16] asserts that there exists a codimension 1 hyperplane H ∈ Gr(n − 2, TpMn−1) such that cf |H is
again irreducible. However, it follows from Claim I.3.4 that cg = cf |H vanishes on some codimension 1
hyperplane, i.e. admits a factor of degree 1, a contradiction. □
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Proof of Lemma I.3.6 for n = 4. If there exists a hyperplanar section of M3 passing through p

that admits more than one axis of affine revolution, then by Lemma I.3.5 and Claim I.3.4 we are done.
Further, if there exists a hyperplanar section of M3 passing through p such that its axis of affine rev-
olution also passes through p, then again by Claim I.3.4 we are done. Therefore we may assume that
every hyperplanar section of M3 passing through p admits exactly one axis of affine revolution, which
does not pass through p.

In this case, we can define the following distribution on Gr(2, TpM3): for every plane π ∈ Gr(2, TpM3),
let ℓπ ⊂ π = TπGr(2, TpM3) be the orthogonal projection of the (unique) axis of affine revolution of
M3 ∩aff({π, O}) on π, which we already know is always a 1-dimensional linear subspace of π. Moreover,
the map π 7→ ℓπ is clearly continuous (cf. [3, Lemma 2.8]), which gives rise to a rank-1 subbundle η

of TGr(2, TpM3). Now, its Stiefel-Whitney class w1(η) ∈ H1(Gr(2, TpM3);Z/2Z) = {0} must be 0 and
thus η is orientable [12, Problem 12-A]. Selecting for each fiber of η the positively oriented unit vector
gives rise to a non-vanishing vector field on Gr(2, TpM3), a contradiction. □

Since the canonical parametrization is defined up to an orthogonal change of coordinates in the
domain, without loss of generality we may further assume that cf vanishes on the hyperplane ⟨ên−1⟩⊥,
i.e.

(I.3.7) cf (x) = xn−1 · qf (x),

where qf is some quadratic form, not necessarily non-zero.

Claim I.3.8. For every irreducible quadric Qn−2 ⊂ TpMn−1, there exists an open subset V ⊆
Gr(n − 2, TpMn−1) of hyperplanes H such that Qn−2 ∩ H contains no codimension 1 linear subspace.
Indeed, every linear space contained in an irreducible quadric has dimension at most half the dimension
of the quadric [7, Theorem 22.13]. Therefore if n ≥ 5, the conclusion is trivial. For n = 4, every
irreducible quadric is projectively equivalent to either a cone, a straight line, or a single point. In each
case, there exists an open subset of planes that intersect Q2 only at the origin. □

Now, if the quadratic form qf on the right-hand side of (I.3.7) is irreducible, then from Claim I.3.8
it follows that for every H ∈ V the zero set of cf |H contains exactly one codimension 1 hyperplane,
namely H ∩ ⟨ên−1⟩⊥. In particular, by Claim I.3.4, Mn−1 ∩ aff({H, O}) is invariant under action of
O(n − 3,R) with hyperplane of revolution H ∩ ⟨ên−1⟩⊥. On the other hand, if the quadratic form
qf is reducible, then cf can be decomposed into a product of three linear forms, and hence its zero
set is a sum of three (not necessarily different) hyperplanes H1, H2, H3. The same argument shows
that for every H ∈ Gr(n − 2, TpMn−1) \ {H1, H2, H3}, Mn−1 ∩ aff({H, O}) is invariant under action
of O(n − 3,R) with hyperplane of revolution H ∩ Hi for some i ∈ {1, 2, 3}. Denote by Vi the set
of hyperplanes H ∈ Gr(n − 2, TpMn−1) such that Mn−1 ∩ aff({H, O}) is invariant under action of
O(n − 3,R) with hyperplane of revolution H ∩ Hi, i = 1, 2, 3. Since each Vi is closed (cf. [3, Lemma
2.7]) and V1 ∪ V2 ∪ V3 = Gr(n − 2, TpMn−1), at least one of those sets has non-empty interior. After a
suitable change of coordinates, we may assume that this is the set corresponding to the plane ⟨ên−1⟩⊥.

Claim I.3.9. In either case, we are eventually in a position where we have an open subset V ⊆
Gr(n − 2, TpMn−1) such that for every H ∈ V , Mn−1 ∩ aff({H, O}) is invariant under the action of
O(n − 3,R) with hyperplane of revolution H ∩ ⟨ên−1⟩⊥. □

Notation. For any 2-dimensional plane π ∈ Gr(2, TpMn−1) and any point a ∈ TpMn−1, denote
by Refπ(a) the orthogonal reflection of a across the plane π. Further, for any angle α ∈ R, denote by
Rotα

π(a) the rotation of a around the axis π⊥ by the angle α.
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Let us define a continuous map

ϕ : Gr(1, ⟨ên−1⟩⊥) × Gr(1, ⟨ên−1⟩⊥) × (TpMn−1 \ ⟨ên−1⟩⊥) → Gr(n − 2, TpMn−1) × Gr(n − 2, TpMn−1),

ϕ(ℓ1, ℓ2, a) = (⟨ℓ⊥
1 ∩ ⟨ên−1⟩⊥, a⟩, ⟨ℓ⊥

2 ∩ ⟨ên−1⟩⊥, Ref⟨ℓ1,ên−1⟩(a)⟩)

(fig. I.3.11) and let ℓ ∈ Gr(1, ⟨ên−1⟩⊥), a ∈ TpMn−1 \ ⟨ên−1⟩⊥ be such that ⟨ℓ⊥ ∩ ⟨ên−1⟩⊥, a⟩ ∈ V .
Then we have ⟨ℓ⊥ ∩ ⟨ên−1⟩⊥, a⟩ = ⟨ℓ⊥ ∩ ⟨ên−1⟩⊥, Ref⟨ℓ,ên−1⟩(a)⟩, so

ϕ(ℓ, ℓ, a) = (⟨ℓ⊥ ∩ ⟨ên−1⟩⊥, a⟩, ⟨ℓ⊥ ∩ ⟨ên−1⟩⊥, a⟩)

is an element of V × V . Since V is open, the preimage ϕ−1(V × V ) is an open neighborhood of
(ℓ, ℓ, a). Thus it contains contains a product of non-empty open sets W1 × W2 × W3, where W1, W2 ⊆
Gr(1, ⟨ên−1⟩⊥) are neighborhoods of ℓ and W3 ⊆ (TpMn−1 \⟨ên−1⟩⊥) is a neighborhood of a. Moreover,
since ϕ(ℓ1, ℓ2, a) = ϕ(ℓ1, ℓ2, λa) for every λ ̸= 0, we may assume that W3 is the interior of a generalized
cone intersected with U .

Let ℓ1 ∈ W1, ℓ2 ∈ W2, a ∈ W3 and define a′ := Ref⟨ℓ1,ên−1⟩(a), a′′ := Ref⟨ℓ2,ên−1⟩(a′) (fig. I.3.11).
In light of the definition of V , it follows from Claim I.3.3 that f |⟨ℓ⊥

1 ∩⟨ên−1⟩⊥,a⟩ is invariant under action of
O(n − 3,R) with hyperplane of revolution ℓ⊥

1 ∩ ⟨ên−1⟩⊥. In particular, this group contains the reflection
across the common fixed-point subspace, which can be viewed as a restriction of Ref⟨ℓ1,ên−1⟩. Similarly,
f |⟨ℓ⊥

2 ∩⟨ên−1⟩⊥,a′⟩ is invariant under Ref⟨ℓ2,ên−1⟩, which implies

f(a′′) = f(a′) = f(a).

Now, observe that

a′′ = Ref⟨ℓ2,ên−1⟩(Ref⟨ℓ1,ên−1⟩(a)) = (Ref⟨ℓ2,ên−1⟩ ◦ Ref⟨ℓ1,ên−1⟩)(a) = Rot2∠ℓ1ℓ2
⟨ℓ1,ℓ2⟩ (a),

which eventually gives us
f
(

Rot2∠ℓ1ℓ2
⟨ℓ1,ℓ2⟩ (a)

)
= f(a)

for every ℓ1 ∈ W1, ℓ2 ∈ W2, a ∈ W3. It means that the graph of f (i.e. the surface Mn−1) is locally
invariant on W3 under action of O(n − 2,R) with common fixed-point subspace ⟨ên−1⟩⊥. Indeed, if we
fix ℓ1 = ℓ and let ℓ2 vary over W2, we can rotate a in any direction by any sufficiently small angle. In
particular, the series expansion of f at p, as long as it is defined, is invariant under the aforementioned
action of O(n − 2,R), which reads

(I.3.10) qf (x) = a⟨x, x⟩ + bxn−1
2, a, b ∈ R

and thus
cf (x) = xn−1(a⟨x, x⟩ + bxn−1

2), a, b ∈ R.

Remark. Our considerations so far show that at every point p ∈ Mn−1 with positive definite second
fundamental form, the series expansion of Mn−1, as long as it is defined, admits a symmetry group
O(n − 2,R). Under the additional assumption that Mn−1 is locally strongly convex, such hypersurfaces
have already been classified for n = 4 (e.g. in [9]). But since they may take a complicated form of
warped products, even such a result gives no straightforward solution to our problem, not to mention
higher dimensions, where to the author’s best knowledge such a classification is still an open problem.

I.4. Proof of the main theorem

With this result at hand, we are ready to prove our main theorem:
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I

I

a

a ′

H = {ℓ1 } ⊥∩ ⟨ên−1 ⟩ ⊥

V

ℓ1

O

p

⟨ên−1⟩⊥

Figure I.3.11. The construction of a′

Proof of Theorem I.1.2. Denote by V ⊆ Gr(n − 2, TpMn−1) the set of hyperplanes H such that
Mn−1 ∩ aff({H, O}) admits an axis of affine revolution ℓ perpendicular to H ∩ ⟨ên−1⟩⊥. Clearly V is
closed (cf. [3, Lemma 2.7]) and has non-empty interior (Claim I.3.9).

Lemma I.4.1. In the above setting, we have either V = Gr(n − 2, TpMn−1) or qf ≡ 0.

Again, we have to consider separately the special case n = 4 and the generic case n ≥ 5.

Proof of Lemma I.4.1 for n ≥ 5. The projective quadric Qn−2
f := {x ∈ TpMn−1 : qf (x) = 0}

does not contain any linear subspace of dimension n − 3 unless it is reducible [7, Theorem 22.13]. From
(I.3.10) it can be readily seen that the latter implies a = 0, which reads cf (x) = bxn−1

3. Now, if
b = 0 then qf ≡ 0, and we are done. Otherwise cf |H vanishes precisely on H ∩ ⟨ên−1⟩⊥ for every
H ∈ Gr(n − 2, TpMn−1) and thus V = Gr(n − 2, TpMn−1). □

Proof of Lemma I.4.1 for n = 4. Suppose that V ̸= Gr(2, TpM3) and let π ∈ ∂V . Then there
exists a convergent sequence of planes πk → π such that M3 ∩ aff({πk, O}) admits an axis of affine
revolution ℓk perpendicular to some line in πk ∩ Q2

f . After passing to a subsequence, without loss of
generality we may assume that the sequence ℓk is convergent to some ℓ∗ perpendicular to some line in
π ∩ Q2

f . From (I.3.10) it can be readily seen that the latter is different from π ∩ ⟨ê3⟩⊥. Moreover, a
simple geometric continuity argument shows that ℓ∗ is the axis of affine revolution of M3 ∩ aff({π, O})
(cf. [3, Lemma 2.7]). Now, if ℓ∗ ̸= ℓ, then M3 ∩ aff({π, O}) admits two different axes of affine revolution
and hence is an ellipsoid (Lemma I.3.5). In particular, cf |π ≡ 0. On the other hand, if ℓ∗ = ℓ, then ℓ is
perpendicular to two different lines in the plane π, so it is perpendicular to the plane π itself. Again, it
implies cf |π ≡ 0 (Claim I.3.4). Hence cf |π ≡ 0 for every π ∈ ∂V . However, cf |π can vanish for at most
3 different planes π unless qf ≡ 0 and the assertion follows. □

Definition I.4.2 ([17, II.3]). Let f : M → Rm+1 be a non-degenerate hypersurface immersion. It
is well known that there exists a canonical choice of a transversal vector field ξ called the affine normal
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field or Blaschke normal field [17, Definition II.3.1]. The affine normal vector field ξ gives rise to the
induced connection ∇, the affine fundamental form h, which is traditionally called the affine metric, and
the affine shape operator S determined by the formulas

DXY = ∇XY + h(X, Y )ξ,

DXξ = −SX.

We shall call (∇, h, S) the Blaschke structure on the hypersurface M [17, Definition II.3.2]. From Codazzi
equation for h we see that the cubic form

(I.4.3) C(X, Y, Z) := (∇Xh)(Y, Z)

is symmetric in X, Y and Z [17, II.4].

Claim I.4.4. It turns out that the condition cf ≡ 0 implies that the cubic form C also vanishes at
p. It is by no means obvious, as (I.4.3) can hardly be expressed in the extrinsic coordinate system (cf.
[10, 1.4.3]). However, we can readily see that C depends only on J3

p f . Indeed, the affine normal field
ξ depends only on J3

p f (cf. [17, Example II.3.3]) and the affine metric h depend only on J2
p f (cf. [17,

Example II.3.3, Proposition II.2.5]). Hence the covariant derivative

(∇Xh)(Y, Z) := X(h(Y, Z)) − h(∇XY, Z) − h(Y, ∇XZ)

depends only on J3
p f . In particular, if another function g : TpNn−1 ⊃ U → R satisfies J3

p f = J3
p g,

then the cubic form of M and the cubic form of N coincide at p. Now, since cf ≡ 0, the canonical
parametrization of Mn−1 osculates up to the terms of 3rd order the parametrization of the unit sphere

g(x) = 1 −
√

1 − ⟨x, x⟩,

for which the cubic form C vanishes identically (cf. [17, Corollary II.4.2]). This concludes the argument.
□

The following lemma may be considered a counterpart of Lemma I.3.5:

Lemma I.4.5. A body of affine 2-revolution K ⊂ Rm, m ≥ 4, admitting three different codimension
2 hyperplanes of affine revolution, admits a codimension 1 hyperplane of affine revolution (i.e. is a body
of affine 1-revolution).

Proof. Let G be the affine symmetry group of K. Since by [3, Lemma 2.2] G is affinely conjugated
to a subgroup of O(m,R), without loss of generality we may assume that G ⊆ O(m,R). In particular,
each codimension 2 hyperplane of affine revolution Hi of K gives rise to a subgroup Gi ⊂ G isomorphic
to O(m − 2,R).

It turns out that the proof of Lemma I.4.5 reduces to a quite simple but tedious linear algebra prob-
lem. The key idea is the following: if the hyperplanes Hi were pairwise transversal, then the orbit of a
generic point under action of G would be of dimension m − 1, which means that ∂K would be a sphere.
Otherwise i.a. G2, G3 share a common representation space H2 + H3 of dimension m − 1 and a common
fixed point subspace H⊥

2 ∩ H⊥
3 of dimension 1, in which case the subgroup ⟨G2, G3⟩ ⊆ G generated by

G2, G3 is by Lemma I.3.5 isomorphic to O(m − 1,R).

Firstly we will show that dim H2 + H3 = m − 1, unless ∂K is a sphere. Let p ∈ ∂K be any point
on the boundary of K. Since ∂K is invariant under G, we have Tp(Gp) ⊆ Tp(∂K), where Gp is the
orbit of p under action of G. Now, if dim Tp(Gp) = m − 1 = dim Tp(∂K) for some p ∈ ∂K, then ∂K is
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a sphere and we are done. Hence we may assume that for every p ∈ ∂K we have dim Tp(Gp) ≤ m − 2.
Observe that Tp(Gip) is a codimension 3 hyperplane parallel to Hi ∩ ⟨p⟩⊥, unless Hi ⊂ ⟨p⟩⊥. Moreover
Tp(G1p) + Tp(G2p) + Tp(G3p) ⊆ Tp(Gp). It follows that for every p ∈ ∂K we have

(I.4.6) dim H1 ∩ ⟨p⟩⊥ + H2 ∩ ⟨p⟩⊥ + H3 ∩ ⟨p⟩⊥ ≤ dim Tp(Gp) ≤ m − 2.

Let L be an arbitrary codimension 3 hyperplane contained in H1 but not in H2, H3. Then L⊥ is
a subspace of dimension 3 and H⊥

2 ∩ L⊥, H⊥
3 ∩ L⊥ are its subspaces of dimension at most 1. Hence there

exists a plane π contained in L⊥ and transversal to H⊥
2 , H⊥

3 . Let p, q ∈ ∂K be its basis. Observe that
H1 ∩ ⟨p⟩⊥ = L = H1 ∩ ⟨q⟩⊥, whereas Hi ∩ ⟨p⟩⊥ ̸= Hi ∩ ⟨q⟩⊥, i = 2, 3. Indeed, otherwise

3 = codim Hi ∩ ⟨p⟩⊥ = codim Hi ∩ ⟨p⟩⊥ ∩ ⟨q⟩⊥ = codim Hi ∩ π⊥ = dim H⊥
i + π = 4,

a contradiction. Denote

Hp := L + H2 ∩ ⟨p⟩⊥ + H3 ∩ ⟨p⟩⊥, Hq := L + H2 ∩ ⟨q⟩⊥ + H3 ∩ ⟨q⟩⊥.

Clearly, Hi ∩ ⟨p⟩⊥ ⊊ Hi ∩ ⟨p⟩⊥ + Hi ∩ ⟨q⟩⊥ ⊆ Hi, i = 2, 3, and since the dimension of the left-hand side
and the right-hand side differs by one, the last inclusion must be in fact an equality. Thus

H2 + H3 = H2 ∩ ⟨p⟩⊥ + H2 ∩ ⟨q⟩⊥ + H3 ∩ ⟨p⟩⊥ + H3 ∩ ⟨q⟩⊥ ⊆ Hp + Hq.

Now, by (I.4.6) we have dim Hp, dim Hq ≤ m − 2. Moreover, dim Hp ∩ Hq ≥ dim L = m − 3, which
implies

dim Hp + Hq = dim Hp + dim Hq − dim Hp ∩ Hq ≤ (m − 2) + (m − 2) − (m − 3) = m − 1.

Comparing the dimensions of the left-hand side and the right-hand side of H2 ⊊ H2 + H3 ⊆ Hp + Hq

yields dim H2 + H3 = m − 1 and hence also dim H⊥
2 ∩ H⊥

3 = dim(H2 + H3)⊥ = 1.

Finally, observe that Rm can be viewed as a direct sum (H2 + H3) ⊕ (H⊥
2 ∩ H⊥

3 ) of representation
spaces of a subgroup ⟨G2, G3⟩ ⊆ G generated by G2, G3. Indeed,

H2 + H3 =
⋃

v∈H3

H2 + v =
⋃

v∈H3

H2 + projH⊥
2

(v)

is clearly invariant under G2 and a similar argument shows that it is also invariant under G3. Moreover,
both G2 and G3 act trivially on H⊥

2 ∩ H⊥
3 . Now, we have

SO(m − 2,R) ≃ (G2)0|H2+H3 ⊊ ⟨G2, G3⟩0|H2+H3 ⊆ SO(m − 1,R),

and since SO(m − 2,R) is a maximal connected subgroup of SO(m − 1,R) [16, Lemma 4], it follows that
⟨G2, G3⟩0|H2+H3 ≃ SO(m − 1,R). Therefore ⟨G2, G3⟩ ≃ O(m − 1,R), which concludes the proof. □

Remark. Note that Lemma I.3.5 (without the superfluous symmetry assumption) reads: if the
affine symmetry group of a compact domain K ⊂ Rm, m ≥ 4, contains two different subgroups affinely
conjugated to O(m − 1,R), it contains a subgroup affinely conjugated to O(m,R). Further, Lemma I.4.5
reads: if the affine symmetry group of a compact domain K ⊂ Rm, m ≥ 4, contains three different
subgroups affinely conjugated to O(m−2,Rm), it contains a subgroup affinely conjugated to O(m−1,R).
Let us state then a more general question:

Question I.4.7. Does a compact domain K ⊂ Rm, m ≥ 4, admitting k + 1 different codimension k

hyperplanes of affine revolution, admit a codimension k − 1 hyperplane of affine revolution, 0 < k < m?

To the author’s best knowledge, the answer is an open problem.
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Recall Lemma I.4.1 which says that either V = Gr(n − 2, TpMn−1) or qf ≡ 0. In the first case
(i.e. V = Gr(n − 2, TpMn−1)), we can repeat the geometric argument from §I.3 to show that actually
the whole hypersurface Mn−1 is invariant under action of O(n − 2,R) with common fixed-point space
aff({⟨ên−1⟩, O}). Hence by Lemma I.4.5 all such points p ∈ Mn−1 lie on at most two different planes
π1, π2, unless Mn−1 is a body of affine revolution.

Finally, we pass to the second case (i.e. qf ≡ 0). Let p ∈ Mn−1 be the point attaining the maximal
Euclidean distance from the origin. It means that Mn−1 is contained in some sphere tangent to Mn−1

at p. In particular, the second fundamental form of Mn−1 at p majorizes the second fundamental form
of the sphere, and thus Mn−1 is strongly convex on some open neighborhood of p. Let U ⊆ Mn−1 be a
maximal open neighborhood of p where the second fundamental form of Mn−1 is positive definite. We
already know from Claim I.4.4 that the cubic form of Mn−1 vanishes identically on U \ (π1 ∪ π2).

Lemma I.4.8 (Maschke, Pick, Berwald [17, Theorem II.4.5]). Let f : M → Rm+1, m ≥ 2, be a
non-degenerate hypersurface with Blaschke structure. If the cubic form (I.4.3) vanishes identically, then
f(M) is hyperquadric in Rm+1.

It follows from Lemma I.4.8 that U is contained in some hyperquadric Qn−1. Now, suppose that ∂U

is non-empty and let p ∈ ∂U . Since Qn−1 is locally strongly convex, the second fundamental form of
Qn−1 at p is positive definite. However, the second fundamental form of Mn−1 at p is equal to the latter
and thus it is also positive definite on some open neighborhood of p, which contradicts the definition of
U . It follows that U = Mn−1, which concludes the proof. □

Remark. In our proof, we used the additional assumption that K is origin-symmetric only to
know that all the axes of affine revolution pass through some fixed point, which implies some nice
geometric structure of Mn−1, determined by its series expansion of order 3. This significantly simplified
our argument, which after all required no algebraic computations. Nevertheless, there are e.g. certain
partial differential equations of order 5, satisfied whenever g is a local parametrization of a surface of
affine revolution. When applied to f |π for every plane π ∈ Gr(2, TpM3), they would yield a system of
polynomial equations in partial derivatives of f . However, it is beyond the scope of human to obtain,
not to mention to solve. Therefore any approach along those lines would badly need the assistance of a
supercomputer.
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CHAPTER II

Differential characterization of quadratic surfaces

Let f ∈ W 3,1
loc (Ω) be a function defined on a connected open subset Ω ⊆ R2. We will show that

its graph is contained in a quadratic surface if and only if f is a weak solution to a certain system of
3rd order partial differential equations unless the Hessian determinant of f is non-positive on the whole
Ω. Moreover, we will prove that the system is in some sense the simplest possible in a wide class of
differential equations, which will lead to the classification of all polynomial partial differential equations
satisfied by parametrizations of generic quadratic surfaces. Although we will mainly use the tools of
linear and commutative algebra, the theorem itself is also somehow related to holomorphic functions.

II.1. Introduction

It was already known since the works of Blaschke [1, p. 18] that conics are the only planar curves
with constant equiaffine curvature. In a special case of a graph of a function of class C5, this condition
is equivalent to a certain 5th order ordinary differential equation, which reads

(II.1.1) 9f ′′(x)2f (5)(x) − 45f ′′(x)f (3)(x)f (4)(x) + 40f (3)(x)3 = 0.

In higher dimensions, hyperquadrics are characterized by Maschke-Pick-Berwald theorem [8, Theo-
rem 4.5] as the only hypersurfaces with vanishing cubic form C defined in [8, ch. II, s. 4]. However,
the definition implicitely uses the intrinsic Blaschke structure and thus the cubic form C can hardly
be expressed in an extrinsic coordinate system. It is also unclear what minimal smoothness we need
to assume. Nevertheless, such a result for 2-dimensional surfaces turns out to be a consequence of two
relatively simple partial differential equations. The aim of this paper is to prove the following main
theorem:

Theorem II.1.2. Let f ∈ W 3,1
loc (Ω) be a function defined on a connected open subset Ω ⊆ R2. Suppose

that the Hessian determinant of f is not non-positive. Then f is a weak solution to the system of partial
differential equations

(II.1.3)
f (3,0)f (0,2)2

− 3f (1,2)f (2,0)f (0,2) + 2f (0,3)f (1,1)f (2,0) = 0,

f (0,3)f (2,0)2
− 3f (2,1)f (0,2)f (2,0) + 2f (3,0)f (1,1)f (0,2) = 0

if and only if its graph is contained in a quadratic surface.

Therefore Theorem II.1.2 can be considered a 2-dimensional analog of the aforementioned result of
Blaschke. Contrary to Maschke-Pick-Berwald, it is formulated in terms of simple, explicit partial differ-
ential equations, with weaker smoothness assumption. Moreover, we will show that the system (II.1.3)
is minimal in the sense that the left-hand sides form a minimal generating set (viz. a reduced Gröbner
basis) of a certain differential ideal.

Such a characterization of quadratic surfaces of positive Gaussian curvature as the only solutions to
some partial differential equations without boundary condition may be useful when one wants to prove
that some specific convex body is an ellipsoid using e.g. the tools of differential geometry. Such problems
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arise naturally in convex geometry, especially in various characterizations of Hilbert spaces among all
finite-dimensional Banach spaces.

As superfluous as it may seem, the assumption on the Hessian determinant is not purely technical,
as the following holds:

Theorem II.1.4. Let f ∈ W 3,1
loc (Ω) be a function defined on a connected open subset Ω ⊆ R2. Suppose

that the Hessian determinant of f is non-positive. Then f is a weak solution to the system of partial
differential equations (II.1.3) if and only if Ω contains a countable sum of disjoint open connected subsets
Ωi such that:

(1) on each Ωi the graph of f is contained in either:
(a) a doubly-ruled surface1, or
(b) a developable surface2, or
(c) a Catalan surface3 with directrix plane XZ, or
(d) a Catalan surface with directrix plane Y Z,

(2) the union
⋃

Ωi is dense in Ω.

Note that all of the above are particular examples of ruled surfaces4. Regrettably, the exact classifi-
cation of solutions to (II.1.3) seems to be a tedious, technical task and therefore will not be given here,
so as not to overshadow the main idea.

To perform lengthy computations, we will employ a widely used technical computing system Wolfram
Mathematica [7]. Nevertheless, they still could have been done with pen and paper (albeit with some
difficulty) and hence the proof remains human-surveyable. A thorough discussion of this aspect can be
found in Appendix A. For transparency, all the results obtained with the help of a computer are marked
with “Spikey” in the margin:

II.2. Notation and basic concepts

To prove the Theorem II.1.2 we will need some very general facts concerning quadratic surfaces,
that are in themselves quite interesting. We begin with rephrasing the problem in the language of
commutative algebra.

Definition II.2.1. Let
R := R

[
x, y, ∂(0,0), ∂(0,1), ∂(1,0), . . .

]
be a ring of polynomials in variables x, y and formal partial derivatives ∂(i,j) and let

S :=
〈

∂(0,2), ∂(2,0), ∂(0,2)∂(2,0) − ∂(1,1)2〉
be a submonoid of the multiplicative monoid of R, with the listed generators. By S−1R we denote a
localisation of R at S [3, §2.1].

1A ruled surface that contains two families of rulings.
2A ruled surface having Gaussian curvature K = 0 everywhere.
3A ruled surface all of whose rulings are parallel to a fixed plane, called the directrix plane of the surface.
4A surface that can be swept out by moving a line in space. The straight lines themselves are called rulings. The Gaussian
curvature on a ruled regular surface is everywhere non-positive.
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The ring S−1R can be viewed as an algebra of a certain type of differential operators T defined for
those smooth functions f : R2 ⊇ Ω → R for which all the expressions

(II.2.2) f (0,2)(x, y), f (2,0)(x, y), f (0,2)(x, y)f (2,0)(x, y) − f (1,1)(x, y)2

do not take a zero value on Ω and thus have reciprocals. We will call such functions generic. Examples
include but are not limited to functions with positive Hessian determinant, i.e. whose graphs have
positive Gaussian curvature.

Notation. Let Ω ⊆ R2 be a connected open subset of R2. Denote by G(Ω) the set of generic
functions f : Ω → R and by Q(Ω) its subset consisting of parametrizations of quadratic surfaces.

Definition II.2.3. Let Dx, Dy : S−1R → S−1R be derivations [3, ch. 16], i.e. R-linear endomor-
phisms of additive group of S−1R satisfying the Leibniz product rule

D(r1r2) = D(r1)r2 + r1D(r2), r1, r2 ∈ S−1R,

and thus uniquely determined by their values on indeterminates:

Dx(x) := 1, Dx(y) := 0, Dx

(
∂(i,j)

)
:= ∂(i+1,j),

Dy(x) := 0, Dy(y) := 1, Dy

(
∂(i,j)

)
:= ∂(i,j+1).

In particular, the well-known formula for differentiating fractions

D
(r

s

)
= D(r)s − rD(s)

s2

follows from the Leibniz product rule. A ring S−1R equipped with derivations Dx, Dy forms a differential
ring.

Definition II.2.4. A differential ideal a in a differential ring R is an ideal that is mapped to itself
by each derivation.

Definition II.2.5. Let X be a subset of G(Ω). The annihilator of X in S−1R, denoted by X†,
is a collection of differential operators T ∈ S−1R such that Tf = 0 for all f ∈ X. The annihilator of
any subset is clearly a differential ideal. The annihilator of an empty set is the whole S−1R and the
annihilator of the whole G(Ω) is just the zero operator.

II.3. Polynomial PDEs satisfied by generic quadratic surfaces

Observe that a graph of a function f is contained in a quadratic surface if and only if its every point
satisfies a quadratic equation

(II.3.1) a11x2 + a12xy + a13xf + a22y2 + a23yf + a33f2 + b1x + b2y + b3f + c = 0

with constant coefficients aij , bk, c. This is equivalent to the fact that the set of functions

(II.3.2)
{

x2, xy, xf(x, y), y2, yf(x, y), f(x, y)2, x, y, f(x, y), 1
}

is linearly dependent. That is how the concept of generalized Wronskian for functions of several variables
enters play. For clarity, we adopt the notation from [10].
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Definition II.3.3 ([10, Definition 1]). A generalised Wronskian of ϕ = (ϕ1(t), . . . , ϕn(t)), where
t = (t1, . . . , tm), is any determinant of the type∣∣∣∣∣∣∣∣∣∣

ϕ

∂1ϕ
...

∂n−1ϕ

∣∣∣∣∣∣∣∣∣∣
,

where ϕ, ∂iϕ are row vectors, ∂i is any partial derivative of order not greater that i and all ∂i are
distinct.

Remark. Note that in the realm of functions in m ≥ 2 variables a generalized Wronskian of φ is no
longer unique, since there are many possible ways of choosing row vectors ∂iϕ satisfying all the imposed
conditions. More precisely, there are (

m + i

m

)
partial derivatives of order not greater than i and hence there are exactly

n−1∏
i=0

((
m + i

m

)
− i

)
generalised Wronskians of n functions in m variables. However, from now henceforth we will identify all
generalized Wronskians that differ only in the order of rows as it does not affect the rank of the matrix.

Notation. Denote by ϕ the tuple of functions (II.3.2).

Assertion II.3.4. Each generalized Wronskian of ϕ can be viewed as an element of S−1R. Moreover,
by the very definition, it belongs to Q(Ω)†. Indeed, if the set of functions (II.3.2) is linearly dependent,
then all its generalized Wronskians vanish identically since their columns are themselves linearly depen-
dent.

The following key proposition characterizes the set of polynomial differential equations satisfied by
the parametrization of any generic quadratic surface.

Proposition II.3.5. Let Ω ⊆ R2 be a connected open subset of R2. Then the annihilator Q(Ω)† ⊆
S−1R is a differential ideal generated by

(II.3.6)
∂(3,0)∂(0,2)2

− 3∂(1,2)∂(2,0)∂(0,2) + 2∂(0,3)∂(1,1)∂(2,0),

∂(0,3)∂(2,0)2
− 3∂(2,1)∂(0,2)∂(2,0) + 2∂(3,0)∂(1,1)∂(0,2).

Proof. Clearly Q(Ω)† is a differential ideal in S−1R. Denote by a the differential ideal generated
by (II.3.6). We have to show that Q(Ω)† = a. We will do this by proving both inclusions.

First, we will show a simpler inclusion Q(Ω)† ⊇ a. Since both Q(Ω)† and a are differential ideals, it
is enough to prove that the generators of a are contained in Q(Ω)†. Let f ∈ Q(Ω) be a parametrization of
some generic quadratic surface. By Assertion II.3.4, all the generalized Wronskians of ϕ vanish identically
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on Ω. Denote by Wi,j the generalised Wronskian of ϕ formed by deleting the row ϕ(i,j) from

ϕ

ϕ(0,1)

ϕ(1,0)

ϕ(0,2)

ϕ(1,1)

ϕ(2,0)

ϕ(0,3)

ϕ(1,2)

ϕ(2,1)

ϕ(3,0)

ϕ(0,4)



.

The only non-trivial (i.e. not vanishing algebraically) ones are the following:

W3,0 = 24f (0,2)2(3f (2,1)f (0,2)2
− 6f (1,1)f (1,2)f (0,2) − f (0,3)f (2,0)f (0,2) + 4f (0,3)f (1,1)2)

W2,1 = 72f (0,2)2(
f (3,0)f (0,2)2

− 3f (1,2)f (2,0)f (0,2) + 2f (0,3)f (1,1)f (2,0)
)

W1,2 = 72f (0,2)2(
f (0,3)f (2,0)2

− 3f (0,2)f (2,1)f (2,0) + 2f (0,2)f (1,1)f (3,0)
)

W0,3 = 24f (0,2)2(4f (3,0)f (1,1)2
− 6f (2,0)f (2,1)f (1,1) + 3f (1,2)f (2,0)2

− f (0,2)f (2,0)f (3,0)
)

Note that although the underlying matrices depend on 4th order partial derivatives, their determinants
do not, which is somehow intriguing.

Remark. Since ϕ consists of n = 10 functions and in m = 2 variables there are exactly 10 partial
derivatives of at most 3rd order, there is a unique generalized Wronskian of ϕ using partial derivatives of
at most 3rd order, namely W0,4. However, it turns out that ϕ(3,0), ϕ(2,1), ϕ(1,2), ϕ(0,3) are always linearly
dependent. Indeed, observe that the 4 × 10 matrix

ϕ(3,0)

ϕ(2,1)

ϕ(1,2)

ϕ(0,3)


has only 4 non-zero columns corresponding to xf(x, y), yf(x, y), f(x, y)2, f(x, y) and a

cf. A.1

direct com-
putation shows that the determinant of this only non-trivial 4 × 4 minor is zero anyway. Thus every
generalized Wronskian of ϕ vanishes identically unless it is missing some 3rd order partial derivative. In
particular, there is no non-trivial generalized Wronskian of ϕ using partial derivatives of order at most
3. Moreover, there are (a priori at most) only 4 non-trivial generalized Wronskians of ϕ using a single
partial derivative order greater than 3, since it must replace one of the 4 partial derivatives of order 3.

Now, since f is assumed to be generic, its 2nd order pure derivative f (0,2) is non-zero. Hence from the
vanishing of W2,1 and W1,2 we obtain that a parametrization of any generic quadratic surface satisfies
(II.1.3). This concludes the first part of the proof.

Remark. Note that for any generic function f , if W2,1 and W1,2 vanish, then the remaining two
generalized Wronskians also vanish. Indeed, we have

(II.3.7)
3f (2,0)W3,0 = 2f (1,1)W2,1 − f (0,2)W1,2,

3f (0,2)W0,3 = 2f (1,1)W1,2 − f (2,0)W2,1,
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while both f (2,0) and f (0,2) are non-zero. Furthermore, the same holds for any pair of featured generalized
Wronskians except for W3,0 and W0,3, when the above equations (II.3.7) in variables W2,1 and W1,2 may
turn out to be linearly dependent. This is the case exactly when

f (0,2)f (2,0) − 4f (1,1)2 = 0,

which together with W3,0 = 0 and W0,3 = 0 forms a system of partial differential equations. This time,
however, apart from parametrizations of certain quadratic surfaces (including degenerate), it admits a
single family of exotic solutions of the form

f(x, y) = a

(x + x0)(y + y0) + b1x + b2y + c,

which arise as parametrizations of certain cubic surfaces. Moreover, note that all these functions are
generic, unless a = 0. Therefore the choice of equations (II.1.3) was arbitrary only to some extent.

Remark. Observe that the last factors of W3,0 and W0,3 as well as W2,1 and W1,2 are equivalent up
to the order of variables. However, the overall symmetry is broken by the common factor f (0,2)2, which
is the result of choosing ϕ(0,4) as a supplementary row. Exactly as we should expect, if we had chosen
ϕ(4,0), we would have obtained the same set of generalized Wronskians, but this time with common
factor f (2,0)2 instead of f (0,2)2.

Let
Q := S−1R

[
x, y, ∂(0,0), ∂(0,1), ∂(1,0), ∂(0,2), ∂(1,1), ∂(2,0), ∂(0,3), ∂(1,2), ∂(0,4)

]
be the localization of a real polynomial ring in selected 11 variables at S. Since localization commutes
with adding new external elements, there is a ring isomorphism

S−1R ≃ Q
[
∂(2,1), ∂(3,0), ∂(1,3), . . .

]
,

where the latter is already a polynomial ring over Q in the remaining infinitely many variables. Let us
choose a graded lexicographic order on variables ∂(i,j) and then graded reverse lexicographic order on
monomials. We will find a Gröbner basis of a with respect to this monomial ordering. For more details
on Gröbner bases including definitions and examples we recommend the reader to go through [2, ch. 2].

Denote polynomials (II.3.6) respectively by p1, p2. Observe that for every i, j ≥ 0 and k = 1, 2,
Dx

iDy
jpk is linear in highest order partial derivatives and thus we can write e.g.

(II.3.8)



DxDxp1

DxDyp1

DyDyp1

DxDxp2

DxDyp2

DyDyp2


= A5



∂(0,5)

∂(1,4)

∂(2,3)

∂(3,2)

∂(4,1)

∂(5,0)


+ b5,

where

A5 :=



0 0 2f (1,1)f (2,0) −3f (0,2)f (2,0) 0 f (0,2)2

0 2f (1,1)f (2,0) −3f (0,2)f (2,0) 0 f (0,2)2 0
2f (1,1)f (2,0) −3f (0,2)f (2,0) 0 f (0,2)2 0 0

0 0 f (2,0)2 0 −3f (0,2)f (2,0) 2f (0,2)f (1,1)

0 f (2,0)2 0 −3f (0,2)f (2,0) 2f (0,2)f (1,1) 0
f (2,0)2 0 −3f (0,2)f (2,0) 2f (0,2)f (1,1) 0 0


20



is a 6 × 6 matrix and b5 (the definition of which is irrelevant and therefore has been omitted for brevity)
is a 6 × 1 vector over S−1R. Moreover, A5 and b5 contain only partial derivatives of order at most 4.
One can easily verify that the determinant of A5 is equal to

cf. A.2

− 64∂(0,2)3
∂(2,0)3 (

∂(0,2)∂(2,0) − ∂(1,1)2)3

and thus is a unit in S−1R. It follows that A5 is invertible over S−1R and we can rewrite (II.3.8) as

(II.3.9) A5
−1



DxDxp1

DxDyp1

DyDyp1

DxDxp2

DxDyp2

DyDyp2


=



∂(0,5)

∂(1,4)

∂(2,3)

∂(3,2)

∂(4,1)

∂(5,0)


+ A5

−1b5.

Now, the left-hand side is a vector of elements from a and hence so is also the right-hand side. Moreover,
since A5

−1b5 contains only partial derivatives of order at most 4, the leading term of each polynomial
on the right-hand side is a corresponding 5th order partial derivative. By definition, the ideal a is closed
under derivations and thus by differentiating these polynomials we can obtain an element of a with the
leading term being any partial derivative of higher order. Using right the same argument we can likewise
write

A4
−1


Dxp1

Dyp1

Dxp2

Dyp2

 =


∂(1,3)

∂(2,2)

∂(3,1)

∂(4,0)

+ A4
−1b4, A3

−1

(
p1

p2

)
=
(

∂(2,1)

∂(3,0)

)
+ A3

−1b3,

since the determinant of

A4 :=


2f (1,1)f (2,0) −3f (0,2)f (2,0) 0 f (0,2)2

−3f (0,2)f (2,0) 0 f (0,2)2 0
f (2,0)2 0 −3f (0,2)f (2,0) 2f (0,2)f (1,1)

0 −3f (0,2)f (2,0) 2f (0,2)f (1,1) 0


is equal to

cf. A.2

− 24∂(0,2)4
∂(2,0)2 (

∂(0,2)∂(2,0) − ∂(1,1)2)
and the determinant of

A3 :=

(
0 f (0,2)2

−3f (0,2)f (2,0) 2f (0,2)f (1,1)

)
is equal to

cf. A.2

3∂(0,2)3
∂(2,0).

Hence all the partial derivatives ∂(2,1), ∂(3,0), ∂(1,3), . . ., which are exactly those not included in the
definition of Q, are contained in the ideal of leading terms ⟨LT(a)⟩ [2, Definition 2.5.1].

Remark. It is a mere coincidence that after computing 2nd order partial derivatives of p1 and p2

the number of independent equations is equal to the number of 5th order partial derivatives of f and
thus the matrix A5 is uniquely determined. The multiplicative monoid S ⊆ R was devised to contain
all the prime factors of det A5. However, to obtain A4 and A3 we had to arbitrarily choose some subset
of variables, and this time it was not a coincidence that both det A4 and det A3 share the same prime
factors as det A5. Indeed, there are other choices for which it is no longer the case. Thus the set of
variables to the polynomial ring Q was carefully selected so that both A4 and A5 are already invertible
in S−1R.

21



Denote by G the set of polynomials constructed above, such that every monomial ∂(2,1), ∂(3,0), ∂(1,3), . . .

is a leading term LT(g) of some polynomial g ∈ G. Suppose that Q(Ω)† ⊋ ⟨G⟩ and let p ∈ Q(Ω)† \ ⟨G⟩.
After a complete reduction of p by G we obtain a remainder r ∈ Q(Ω)† \ ⟨G⟩, which is irreducible by
G, i.e. its leading term LT(r) is not a multiple of any LT(g), g ∈ G [2, Theorem 2.3.3]. Thus r is an
element of the coefficient ring Q and corresponds to some rational function in selected 11 variables. We
will prove that r = 0, which will eventually give us the desired contradiction. By definition, it vanishes
for any tuple consisting of x, y, and relevant partial derivatives of some function parametrizing a generic
quadratic surface at (x, y). Since r is rational, it is enough to show that the set of such arguments has
a non-empty interior as a subset of R11.

For this, we define an implicit function δ : R11 → R11 in the following way. Let f be a parametrization
of some quadratic surface satisfying (II.3.1) with a33 = 1. Then δ maps the tuple of parameters

(II.3.10)
(

x, y, a11, a12, a13, a22, a23, b1, b2, b3, c
)

to the tuple (
x, y, f, f (0,1), f (1,0), f (0,2), f (1,1), f (2,0), f (0,3), f (1,2), f (0,4)

)
consisting of x, y and relevant partial derivatives of f at (x, y). We can obtain an explicit formula for
δ by symbolically solving the quadratic equation (II.3.1) first and then symbolically differentiating the
result. Since in general there are two possible solutions for f , we have to locally select an arbitrary
branch of the square root function, so that δ is smooth.

Now, consider a generic function

f(x, y) =
√

1 + x2 + y2

parametrizing a quadratic surface represented by the tuple of parameters

(II.3.11)
(

x, y, −1, 0, 0, −1, 0, 0, 0, 0, −1
)

.

Since (II.2.2) depend continuously on (II.3.10), any point in some open neighborhood U of (II.3.11) also
corresponds to a parametrization of some generic quadratic surface and thus r ◦ δ vanishes on U . Hence
it is enough to show that δ(U) has a non-empty interior. Computing the Jacobian determinant of δ at
(II.3.11) yields

cf. A.3

9
(
x2 + 1

)4

128 (x2 + y2 + 1)11 ,

which is non-zero. Hence δ is a local diffeomorphism and so there exists an open subset V ⊆ U such
that δ|V : V → δ(V ) is a diffeomorphism. In particular, δ(V ) is open. However, recall that it is
contained in the zero set of r, which must therefore be a zero function, a contradiction. It follows that
a ⊆ Q(Ω)† = ⟨G⟩ ⊆ a, which means that Q(Ω)† = a and moreover G is, in fact, a reduced Gröbner basis
of a, which concludes the proof. □

Remark. Now we are able to clarify in what sense equations (II.1.3) are minimal. Namely, (II.3.6)
form a reduced Gröbner basis of Q(Ω)†, while, as it will turn out, we would obtain the same results as in
Theorem II.1.2 and Theorem II.1.4 for any generating set of Q(Ω)†. Although the elements (II.3.6) seem
to be the best choice, the reduced Gröbner basis is by no means unique. Besides, with Proposition II.3.5
at hand, finding other generating sets becomes a purely algorithmic task.
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II.4. Smoothing properties and their connection with holomorphicity

At some point in the future, we will want to deduce a linear dependence of a set of functions from
the vanishing of their generalized Wronskians. For this, we will use the main result from [10], where
the necessary and sufficient conditions are established. Although the author roughly requires that all
the generalized Wronskians must vanish, in the course of the inherently constructive proof he considers
only finitely many generalized Wronskians of bounded order. Nevertheless, our initial assumption that
the function f is merely an element of W 3,1

loc (Ω) is too weak for any non-trivial generalized Wronskian
to be well-defined. Therefore we need to somehow improve the smoothness of f . As it turns out,
the differentiability of class C5 will be sufficient and thus we will not use the following fact in its full
generality.

Lemma II.4.1. Let f ∈ W 3,1
loc (Ω) be a function defined on a connected open subset Ω ⊆ R2. Suppose

that f is generic and is a weak solution to the system of partial differential equations (II.1.3). Then f is
infinitely differentiable.

Proof. Let u, v : Ω → R be the functions defined as follows:

(II.4.2)

u(x, y) := f (2,0)(x, y) − f (0,2)(x, y)∣∣f (0,2)(x, y)f (2,0)(x, y) − f (1,1)(x, y)2
∣∣3/4 ,

v(x, y) := 2f (1,1)(x, y)∣∣f (0,2)(x, y)f (2,0)(x, y) − f (1,1)(x, y)2
∣∣3/4 .

Note that they are well-defined, by the assumption that f is generic. Since they depend only on the
2nd order partial derivatives of f , which are assumed to be elements of W 1,1

loc (Ω), and moreover the
Hessian determinant of f is locally bounded away from 0, both functions u, v are elements of W 1,1

loc (Ω).
Computing their weak partial derivatives and applying (II.1.3) one can find out that they satisfy the
Cauchy-Riemann equations:

cf. A.4

u(1,0)(x, y) − v(0,1)(x, y) = ±
(
3f (0,2)(x, y) + f (2,0)(x, y)

)
p1 − 2f (1,1)(x, y)p2

4f (0,2)(x, y)
∣∣f (0,2)(x, y)f (2,0)(x, y) − f (1,1)(x, y)2

∣∣7/4 = 0,

u(0,1)(x, y) + v(1,0)(x, y) = ±
2f (1,1)(x, y)p1 −

(
3f (2,0)(x, y) + f (0,2)(x, y)

)
p2

4f (2,0)(x, y)
∣∣f (0,2)(x, y)f (2,0)(x, y) − f (1,1)(x, y)2

∣∣7/4 = 0,

where p1, p2 denote respectively the left-hand sides of (II.1.3) and ± is the sign of the Hessian determi-
nant. Again, the above formulas are well-defined, by the assumption that f is generic. Thus u, v are
analytic on Ω [4, Theorem 9]. This is actually a special case of a more general result on the regularity
of solutions of hypo-elliptic partial differential equations [6].

Now, observe that the 1st order partial derivatives of u, v as well as the left-hand sides of (II.1.3) are
linear in 3rd order partial derivatives of f and thus we can write e.g.

u(1,0)

u(0,1)

p1

p2

 = A


f (0,3)

f (1,2)

f (2,1)

f (3,0)

 ,

which allows us to express all the 3rd order partial derivatives of f in terms of the 1st order partial
derivatives of u and the 2nd order partial derivatives of f . To do this, we only need to verify that the
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matrix A is invertible. Indeed, its determinant is equal to

cf. A.4

± 4f (0,2)(x, y)f (2,0)(x, y)∣∣f (0,2)(x, y)f (2,0)(x, y) − f (1,1)(x, y)2
∣∣1/2 ,

where ± is the sign of the Hessian determinant. Therefore we have

(II.4.3)


f (0,3)

f (1,2)

f (2,1)

f (3,0)

 = A−1


u(1,0)

u(0,1)

p1

p2

 = A−1


u(1,0)

u(0,1)

0
0

 ,

where the right-hand side is linear in 1st order partial derivatives of u and algebraic in 2nd order partial
derivatives of f . Since A−1 = (det A)−1(adj A), where det A is locally bounded away from 0 and adj A is
a polynomial in 2nd order partial derivatives of f , we have A−1 ∈ W 1,1

loc (Ω). It follows that the left-hand
side (and hence also the right-hand side) is an element of W 1,1

loc (Ω), which means by the very definition
that f ∈ W 4,1

loc (Ω). Now we are able to weakly differentiate the equalities (II.4.3) and iterate the same
argument to see that f is indeed infinitely differentiable on Ω. This ends the proof. □

II.5. Proofs of the main theorems

Before we move on to the essential part of this section, we will prove the following lemma, which
will play a key role in the proofs of both main theorems:

Lemma II.5.1. Let f ∈ W 3,1
loc (Ω) be a function defined on a connected open subset Ω ⊆ R2. Suppose

that f is generic. Then f satisfies the system of partial differential equations (II.1.3) if and only if its
graph is contained in a quadratic surface.

Proof. Left implication ( ⇐= ) follows immediately from Proposition II.3.5. A proof of the right
implication ( =⇒ ) is not so straightforward, since we want to deduce a linear dependence of a set
of functions from vanishing of their generalized Wronskians, which fails to be true in general [9] and
therefore needs specific arguments.

Again we adopt the notation from [10].

Definition II.5.2 ([10, Definition 2]). A critical point of ϕ is a point of the domain at which all
generalized Wronskians of ϕ vanish.

Definition II.5.3 ([10, Definition 3]). An r × r generalised sub-Wronskian of ϕ, 1 ≤ r ≤ n, is a
generalised Wronskian of any subsequence of ϕ.

Note that not every minor of a generalized Wronskian is a generalized sub-Wronskian. Indeed, the
above definition requires that it also satisfies the additional condition for orders of partial derivatives.

Definition II.5.4 ([10, Definition 4]). The order of a critical point t of ϕ is the largest positive
integer r for which some r×r generalized sub-Wronskian of ϕ is not zero at t. Should all sub-Wronskians
vanish at t, the order is defined to be zero.

We will show that every t ∈ Ω is a critical point of ϕ of order 9. First, observe that all 10 × 10 gen-
eralized Wronskians of ϕ vanish identically on Ω. Indeed, from Lemma II.4.1 we infer that f is smooth
and thus all its generalized Wronskians are well-defined. Moreover, by Assertion II.3.4 they belong to
Q(Ω)† and hence they vanish identically on Ω since both generators of Q(Ω)† do.
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We are left to prove that for every t ∈ Ω there exists a 9 × 9 generalized sub-Wronskian of ϕ that is
non-zero at t. Observe that i.a. every 9 × 9 minor of the following 9 × 10 matrix

W :=



ϕ

ϕ(0,1)

ϕ(1,0)

ϕ(0,2)

ϕ(1,1)

ϕ(2,0)

ϕ(0,3)

ϕ(1,2)

ϕ(0,4)


that comprises the first row is a valid sub-Wronskian of ϕ and thus it is enough to show that W = W (t)
has full rank at every t ∈ Ω. Denote by Wi the minor of W obtained by deleting ith column and suppose
that all Wi are zero. A direct computation shows that

cf. A.1

W6 = 4f (0,2)
(

3f (0,2)f (0,4) − 4f (0,3)2)
,

which implies

f (0,4) = 4f (0,3)2

3f (0,2) .

Applying the above result to the definition of W5 yields

cf. A.1

W5 = −24f (0,2)3
f (0,3)

and consequently
f (0,3) = 0.

It follows that

cf. A.1

W4 = 36f (0,2)5
,

which finally gives us the desired contradiction.

We are now at a point where we can apply the following fundamental theorem:

Lemma II.5.5 ([10, Theorem 2]). If G is an open connected set consisting of critical points of the
same order r > 0, then ϕ has a linearly independent subset Sr = {ϕ1, . . . , ϕr}, say, which is a basis of
span(ϕ), and consequently ϕ is linearly dependent on G.

By Lemma II.5.5 we know that ϕ is linearly dependent on Ω. This concludes the proof. □

Remark. Observe that the system of partial differential equations (II.1.3) is satisfied if and only
if a pair of functions (II.4.2) satisfies Cauchy-Riemann equations. Thus the graph of f is contained in
a quadratic surface if and only if u + iv is holomorphic. Moreover, if f satisfies (II.3.1), then a direct
computation shows that u + iv is simply a quadratic polynomial:

(II.5.6)
cf. A.4

u + iv = ((Q1,1 − Q2,2) − 2iQ1,2) + 2(Q1,4 − iQ2,4)z + Q4,4z2

| det Q|3/4 ,

25



where

(II.5.7) Q :=


a11

1
2 a12

1
2 a13

1
2 b1

1
2 a12 a22

1
2 a23

1
2 b2

1
2 a13

1
2 a23 a33

1
2 b3

1
2 b1

1
2 b2

1
2 b3 c


is a symmetric matrix defining an affine quadratic form (II.3.1) and Qi,j is the (i, j) minor of Q, i.e. the
determinant of the submatrix formed by deleting the ith row and jth column.

Remark. Since a quadratic surface is uniquely determined by 9 parameters and the quadratic
polynomial (II.5.6) has only 5 parameters, a natural question arises which functions correspond to the
same quadratic polynomial? Note that u, v depend only on 2nd order partial derivatives of f , which
means that adding linear terms does not change (II.5.6). For completeness, we still need one more
parameter. Careful inspection of (II.5.6) shows e.g. that every function of the form

f(x, y) := a
√

1 − ax2 − ay2 + bx + cy + d

gives rise to the same quadratic polynomial u + iv = z2. Unfortunately, the general answer is far more
complicated and will not be given here.

Finally, we still will need one more simple fact, which can be verified by a direct computation:

Assertion II.5.8 ([11, Theorem 1]).
cf. A.4

Let f : R2 ⊃ Ω → R be a function of class C2 defined on an
open subset of R2 and satisfying a quadratic equation (II.3.1). Then the following formula holds:

det Hf (x, y) · ∆f (x, y)2 = −16 det Q,

where Hf is the Hessian matrix of f , ∆f is the discriminant of (II.3.1) with respect to the variable f

and Q is just as defined in (II.5.7). ■

Now we are ready to prove Theorem II.1.2.

Proof of Theorem II.1.2. Define U ⊆ Ω to be the subset consisting of those points, where the
Hessian determinant of f is positive. Note that U is open, which immediately follows from the continuity
of partial derivatives. Moreover, the assumption on f asserts that it is also non-empty.

First, we will show the right implication ( =⇒ ). Since f |U is generic, by Lemma II.5.1 its graph
is contained in a quadratic surface. Let t ∈ Ω be a limit point of U , i.e. such that there exists a
sequence t• of points in U whose limit is t. Now, if ∆f vanishes identically on U then f is affine, a
contradiction. Thus there exists u ∈ U such that ∆f (u) > 0, which implies −16 det Q > 0. More-
over, since ∆f is a quadratic polynomial, the sequence ∆f (t•)2 is bounded from above. It follows that
det Hf (t•) = −16 det Q·∆f (t•)−2 is bounded from below by some positive constant ε > 0. In particular,
we have det Hf (t) ≥ ε > 0 and hence t ∈ U , by the very definition. Thus we have shown that U contains
all its limit points, which makes it closed in Ω. However, recall that U is also open, in which case we
have simply U = Ω. This concludes the first part of the proof.

The remaining left implication ( ⇐= ) follows right the same way. Since the graph of f |U is by
assumption contained in a quadratic surface, we repeat the above limit point argument to see that
likewise U = Ω. With this result at hand, we once again apply Lemma II.5.1 to conclude the proof. □
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Finally, we are in a position to clear out the assumption on the Hessian determinant. However, it
turns out to be important, since (II.1.3) is also satisfied by parametrizations of some ruled surfaces, the
Hessian determinant of which is non-positive.

Proof of Theorem II.1.4. Define the following open sets:

Ωa :=
{

f (0,2) ̸= 0, f (2,0) ̸= 0, f (0,2)f (2,0) − f (1,1)2
< 0
}

,

Ωb := Int
{

f (0,2)f (2,0) − f (1,1)2 = 0
}

,

Ωc := Int
{

f (2,0) = 0
}

,

Ωd := Int
{

f (0,2) = 0
}

.

Clearly their sum Ωa ∪Ωb ∪Ωc ∪Ωd is dense in Ω. By definition, on each connected component of Ωb the
graph of f is contained in a developable surface. Moreover, on each connected component of Ωc (respec-
tively: Ωd) f is linear along every straight line parallel to the OX (respectively: OY ) axis and thus, again
by definition, its graph is contained in a Catalan surface with directrix plane XZ (respectively: Y Z).
Hence to prove the right implication ( =⇒ ) it remains for us to show that on every connected component
of Ωa the graph of f satisfying (II.1.3) is contained in a doubly-ruled surface, which readily follows from
Lemma II.5.1. Indeed, we immediately obtain that the graph of f is contained in a quadratic surface of
negative Gaussian curvature. The only two are hyperbolic paraboloid and single-sheeted hyperboloid,
both of which are doubly-ruled [5, p. 15]. This concludes the first part of the proof.

On the other hand, observe that f |Ωb automatically satisfies (II.1.3). Indeed, denote

Hf (x, y) := f (0,2)(x, y)f (2,0)(x, y) − f (1,1)(x, y)2

and observe that

p1 = −4f (1,2)Hf + f (0,2) ∂Hf

∂x
+ 2f (1,1) ∂Hf

∂y
= 0,

p2 = −4f (2,1)Hf + f (2,0) ∂Hf

∂y
+ 2f (1,1) ∂Hf

∂x
= 0,

where p1, p2 again stand for the left-hand sides of (II.1.3), respectively. Moreover, f |Ωc (respectively:
f |Ωd) satisfies f (2,0) ≡ 0 and consequently f (3,0) ≡ 0 (respectively: f (0,2) ≡ 0 and consequently f (0,3) ≡
0), in which case a simple check shows that it satisfies (II.1.3) as well. Hence to prove the left implication
( ⇐= ) it remains for us to show that for each Ωi, f |Ωi∩Ωa satisfies (II.1.3). However, Ωi∩Ωa is non-empty
if and only if the graph of f |Ωi is contained in a doubly-ruled surface of negative Gaussian curvature.
The only two are hyperbolic paraboloid and single-sheeted hyperboloid [5, p. 15], both of which are
quadratic. The assertion follows from Lemma II.5.1, which concludes the proof. □

Remark. Denote by

f(t + h) =:
3∑

k=0

1
k!fk(t)[h] + o(∥h∥)3

the series expansion of f at t ∈ Ω, where fk(t) stands for its kth order homogeneous Taylor polynomial in
h. Generally, any 2nd order homogeneous polynomial vanishes on at most two lines in RP1. Therefore if
the graph of f is contained in a doubly-ruled surface, f2(t) vanishes exactly on the two rulings that pass
through t. Moreover, f3(t) likewise must vanish on the same two rulings. In particular, it follows that
f2(t) divides f3(t) as a polynomial. So it should come as no surprise to us that, for a generic function
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f , equations (II.1.3) are satisfied if and only if f2(t) divides f3(t). Indeed,

f3(t)[h1, h2] =
(

f (3,0)(t)
f (2,0)(t)h1 + f (0,3)(t)

f (0,2)(t)h2

)
f2(t)[h1, h2]

− h1h2

(
p2(t)

f (2,0)(t)f (0,2)(t)h1 + p1(t)
f (2,0)(t)f (0,2)(t)h2

)
,

where p1, p2 again stand for the left-hand sides of (II.1.3), respectively. Observe that the remainder is a
product of h1, h2 and some linear homogeneous polynomial, whereas f2(t)[h1, h2] is divisible by neither
h1 nor h2, which means it can not divide the remainder unless the latter is zero. Thus we have found yet
another way of looking on (II.1.3): for, in generic case, it arises as generalized Wronskians of a certain
set of functions, as Cauchy-Riemann equations for a certain pair of functions and now as coefficients of
a certain remainder from dividing f3(t) by f2(t).

Remark. Since the proofs of both theorems were mainly algebraic, the same results hold also in a
complex setting, if we assume f : C2 ⊇ Ω → C to be holomorphic. Although the author did not point it
out, the same applies likewise to the cited work [10] concerning generalized Wronskians, which allows us
to apply the results in an analogous manner. Only smoothing Lemma II.4.1 ceases to make sense, but
actually it is not needed anymore.

Let us conclude our considerations with an alternative proof of a well-known corollary from the
aforementioned theorem of Maschke-Pick-Berwald [8, Theorem 4.5]:

Corollary II.5.9. Let S ⊂ R3 be a convex surface of class C3 such that for every x ∈ S there is a
quadratic surface having 3rd order contact with S at x. Then S is itself a quadratic surface.

Proof. Define f : R2 ⊇ U → R to be a function such that its graph contains an open subset of
S. Fix x ∈ U and define g : R2 ⊇ V → R to be a parametrization of a quadratic surface having 3rd

order contact with S at x. It follows from the ‘if’ part of Theorem II.1.2 that g satisfies (II.1.3) at x.
Moreover, by assumption, we have the equality of jets J3

xg = J3
xf and hence f likewise satisfies (II.1.3)

at x. Now, since x was arbitrary, it means that f satisfies (II.1.3) on the whole domain U and finally
from the ‘only if’ part of Theorem II.1.2 we obtain that its graph is contained in a quadratic surface.
This concludes the proof. □

The above differential characterization of quadratic surfaces is expressed in the language of differ-
ential geometry rather than differential equations. However, unlike Theorem II.1.2, the assumption of
Corollary II.5.9 is clearly invariant under affine change of coordinate system, which is a highly desirable
property.
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CHAPTER III

On separably integrable symmetric convex bodies

An infinitely smooth symmetric convex body K ⊂ Rd is called k-separably integrable, 1 ≤ k < d, if
its k-dimensional isotropic volume function VK,H(t) = Hd({x ∈ K : dist(x, H⊥) ≤ t}) can be written
as a finite sum of products in which the dependence on H ∈ Gr(k,Rd) and t ∈ R is separated. In this
paper, we will obtain a complete classification of such bodies. Namely, we will prove that if d − k is
even, then K is an ellipsoid, and if d − k is odd, then K is a Euclidean ball. This generalizes the recent
classification of polynomially integrable convex bodies in the symmetric case.

III.1. Introduction

Newton argued in Principia that the areas of caps of a planar convex body with infinitely smooth
boundary are not expressible in terms of algebraic equations:

Theorem III.1.1 ([15, §VI, Lemma XXVIII]). There is no oval figure whose area, cut off by right
lines at pleasure, can be universally found by means of equations of any number of finite terms and
dimensions.

On the other hand, it was already known since the remarkable result of Archimedes that the volume
cut off by a plane from a Euclidean ball in R3 depends algebraically on the plane. Further, it can be
easily verified that the latter is true for any ellipsoid in any odd-dimensional space. It is, therefore,
natural to ask to what extent can Newton’s result be generalized.

Several related questions of this type were brought up by Arnold [6, 1987-14, 1988-13, 1990-27] in
his famous seminar at Moscow State University. In 2015, Vassiliev [21] solved the problem 1988-13 by
showing that if K ⊂ Rd is a bounded domain in an even-dimensional space, then the volumes V ±

K,H(t)
cut off by a hyperplane parallel to H ∈ Gr(d − 1,Rd) at distance t ∈ R from the origin are not algebraic
functions of H and t. Two years later, Agranovsky [1] suggested a new direction for further research,
introducing the concept of polynomial integrability.

Definition III.1.2 ([11, §2.1]). Let K ⊂ Rd be a convex body. For ξ ∈ Sd−1 we define the parallel
section function of K by

AK,ξ(t) := Hd−1(K ∩ {⟨ξ⟩⊥ + tξ}),

where {⟨ξ⟩⊥ + tξ} is the hyperplane perpendicular to ξ at distance t from the origin.

Definition III.1.3 ([12, Definition 1.1]). Let K be a convex body in Rd. Then K is called polyno-
mially integrable if its parallel section function AK,ξ(t) is a polynomial in t on its support, i.e.,

AK,ξ(t) =
n∑

i=0
ai(ξ)ti, ai : Sd−1 → R.

Agranovsky showed that if K ⊂ Rd is a domain with a smooth boundary in an even-dimensional
space (the smoothness assumption was already known to be necessary), then it is not polynomially
integrable [1, Theorem 2]. Equivalently, the volume V ±

K,H(t) is not a polynomial in t. Since, on the one
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hand, the assumption of polynomial integrability imposes additional constraints on the dependence of
V ±

K,H(t) on t but, on the other, removes all constraints on the dependence of V ±
K,H(t) on H, his result has

a slightly different flavor. Agranovsky also showed that in an odd-dimensional space, all polynomially
integrable bodies must be convex [1, Theorem 5]. Their classification was completed shortly afterward
by Koldobsky, Merkurjev, and Yaskin [12], who proved the following theorem:

Theorem III.1.4 ([12, Theorem 3.7]). Let d be an odd positive integer. If K is an infinitely smooth
polynomially integrable convex body in Rd, then K is an ellipsoid.

In a recent work, Agranovsky, Koldobsky, Ryabogin, and Yaskin [5] established a similar result in even-
dimensional spaces, assuming that the parallel section function AK,ξ(t) can be expressed in the form

AK,ξ(t) = P (ξ, t)
√

Q(ξ, t),

where P, Q are polynomials in t and deg Q = 2 [5, Theorem 1.4].

For other developments on the problem, the reader is referred to [2, 3, 4, 7, 8, 22, 23, 24].

III.2. Statement of the result

In this paper, we are going to significantly weaken the polynomial integrability condition. Before we
do this, however, we need to introduce the notion of separable integrability.

Definition III.2.1. Suppose that X, Y are Hausdorff spaces and A, B are subalgebras of C(X,R), C(Y,R),
respectively. The algebraic tensor product A ⊗ B of A, B is a subalgebra of C(X × Y,R) generated by
pure products of the form

(a ⊗ b)(x, y) := a(x)b(y), a ∈ A, b ∈ B.

Definition III.2.2. A function in C(X ×Y,R) is called separable if it is a finite sum of pure products
(i.e., an element of the algebraic tensor product C(X,R) ⊗ C(Y,R)). A function is called entangled if it
is not separable.

Denote by Gr(k,Rd) the Grassmann manifold of all k-dimensional linear subspaces of Rd.

Definition III.2.3. Let K ⊂ Rd be a convex body. For a k-dimensional linear subspace H ∈
Gr(k,Rd), 1 ≤ k < d, we define the k-dimensional isotropic volume function of K by

VK,H(t) = Hd({x ∈ K : dist(x, H⊥) ≤ t}),

where {x ∈ K : dist(x, H⊥) ≤ t} is the intersection of K with a k-dimensional right circular hypercylinder
with base space H, axis H⊥ and radius t.

Being careful in making delicate decisions about the domain, we will intentionally define the key
concept of separable integrability only locally.

Definition III.2.4. A convex body K ⊂ Rd is called locally k-separably integrable, 1 ≤ k < d, if
its k-dimensional isotropic volume function VK,H(t) : Gr(k,Rd) × [0, ∞) → R is separable in some open
neighborhood U of Gr(k,Rd) × {0}, i.e.,

(III.2.5) VK,H(t) =
n∑

i=0
ai(H)bi(t), ai : Gr(k,Rd) → R, bi : [0, ∞) → R

for every (H, t) ∈ U .
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Remark. By definition, if a convex body K ⊆ Rd is polynomially integrable, then it is also locally
1-separably integrable. Indeed, for t such that the interval [−t, +t] is contained in the support of AK,ξ

we have

VK,⟨ξ⟩(t) =
∫

[−t,+t]
AK,ξ(r) dr =

n∑
i=0

ai(ξ)
(∫

[−t,+t]
ri dr

)
.

Remark. If d − k is even and K ⊆ Rd is an ellipsoid, then it is locally k-separably integrable.
Indeed, for t such that the ball Bd(t) ∩ H is contained in the projection K | H we have

VK,H(t) =
∫
Bd(t)∩H

Hd−k(K ∩ {H⊥ + u}) du

=
∫
Sd−1∩H

∫
[0,t]

rk−1Hd−k(K ∩ {H⊥ + rθ}) dr dθ

=
∫
Sd−1∩H

∫
[0,t]

rk−1AK∩⟨H⊥,θ⟩,θ(r) dr dθ.

Now, since K ∩⟨H⊥, θ⟩ is an ellipsoid in an odd-dimensional space ⟨H⊥, θ⟩, it is polynomially integrable.
It follows that

VK,H(t) =
∫
Sd−1∩H

∫
[0,t]

rk−1
d−k∑
i=0

aH,i(θ)ri dr dθ =
d−k∑
i=0

(∫
Sd−1∩H

aH,i(θ) dθ

)(∫
[0,t]

rk+i−1 dr

)
.

Our main result is the following theorem:

Theorem III.2.6. Let K ⊆ Rd be an origin-symmetric convex body with infinitely smooth boundary
∂K. If K is locally k-separably integrable, then d − k is even and K is an ellipsoid or d − k is odd and
K is a Euclidean ball.

Note that none of the results mentioned in §III.1 requires K to be symmetric. Therefore Theo-
rem III.2.6 generalizes Theorem III.1.4 only under this additional assumption. Unfortunately, exactly as
in [12], the non-symmetric case is essentially more difficult and requires more involved algebraic argu-
ments. Nevertheless, Theorem III.2.6 seems to indicate the crux of polynomial integrability. Namely, it is
not so much the rigidity of polynomials that makes Theorem III.1.4 true as the fact that the linear space
of polynomials of fixed degree is finite-dimensional. Interestingly enough, [5, Theorem 1.4] generalizes
Theorem III.1.4 in a completely different way than Theorem III.2.6. On the one hand, it still needs
the rigidity of polynomials, but on the other, it is more flexible in terms of the linear structure. This
phenomenon prompts us to ask the following question:

Question III.2.7. Let K be a bounded domain in Rd with an infinitely smooth boundary ∂K. If the
k-dimensional isotropic volume function VK,H(t) can be locally expressed in the form

VK,H(t) = Φ(a1(H), a2(H), . . . , am(H), b1(t), b2(t), . . . , bn(t))

on some open neighborhood of Gr(k,Rd)×{0}, where Φ : Rm+n → R is algebraic and ai : Gr(k,Rd) → R,
bi : [0, ∞) → R are smooth, is K necessarily an ellipsoid?

It contains all the aforementioned results, including ours. To the authors’ best knowledge, no counterex-
ample is known so far.

Remark. By the superposition theorem of Kolmogorov [13], there always exist monotonic increas-
ing functions ai ∈ C(Gr(k,Rd),R), bi ∈ C([0, ∞),R) with the property that each continuous function
VK,H(t) ∈ C(Gr(k,Rd) × [0, ∞),R) can be (locally) represented in the form

VK,H(t) =
5∑

i=1
ϕi(ai(H) + bi(t))
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with functions ϕi ∈ C(R,R). Therefore the question is not really about the separability of variables or
even finiteness of the representation, but rather if the individual functions in such a representation can
be made infinitely smooth or even algebraic. This type of question is already much more delicate, as in
Kolmogorov’s proof, there is an overt rivalry between the smoothness of ai and bi and the smoothness
of ϕi. This also indicates why the initial smoothness assumption was crucial. However, since we do not
insist that all the functions ϕi should be one-parameter, we seem to avoid the basic difficulty (cf. [25]).
After all, our question may be considered as yet another (local) variant of the superposition problem for
a particular class of functions arising as k-dimensional isotropic volumes of smooth convex bodies.

III.3. Definitions and basic concepts

We will begin with a brief reminder of the basic concepts and definitions that we will frequently use
in the rest of the work.

Notation. Throughout the text, we will use the multi-index notation. A d-dimensional multi-index
is a d-tuple α = (α1, α2, . . . , αd) of non-negative integers. For multi-indices α, β ∈ Nd and a vector
x ∈ Rd we define the partial order

α ≤ β ⇐⇒ αi ≤ βi ∀i ∈ {1, 2, . . . , d},

the absolute value
|α| := α1 + α2 + . . . + αd,

the power
xα := xα1

1 xα2
2 · · · xαd

d

and the high-order partial derivative
∂α := ∂α1

1 ∂α2
2 · · · ∂αd

d .

III.3.1. Fourier analysis. We adopt the notation and definitions from [11].

Definition III.3.1 ([11, §2.2, §2.1]). A closed compact set K ⊂ Rd with a non-empty interior is
called a convex body if it contains the line segment connecting any two of its points. If a convex body K

is origin-symmetric, then its Minkowski functional defined by

∥x∥K := min{a ≥ 0 | x ∈ aK}

is a norm on Rd.

It is easy to see that the Minkowski functional is a homogeneous function of degree 1 on Rd and that

(III.3.2) K = {x ∈ Rd | ∥x∥K ≤ 1}.

Also, it follows from the definition that the origin is an interior point of every symmetric convex body,
so the Minkowski functional is strictly positive outside the origin.

Notation ([11, §2.5]). We denote by S(Rd) the space of complex-valued functions ϕ ∈ C∞(Rd)
converging to zero at infinity together with all their derivatives faster than any negative power of ∥ · ∥2.
Elements of the space S(Rd) will be called test functions. As usual, we denote by S(Rd)′ the space of
continuous linear functionals on S(Rd), which we call distributions over S(Rd).

Definition III.3.3 ([11, §2.5]). We define the Fourier transform of a function ϕ ∈ L1(Rd) by

Fϕ(ξ) := ϕ̂(ξ) :=
∫
Rd

ϕ(x)e−i(x,ξ) dx, ξ ∈ Rd.
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Further, we define the action of a complex-valued function f ∈ L1(Rd) on a test function ϕ as

⟨f, ϕ⟩ :=
∫
Rd

f(x)ϕ(x) dx

and finally, we define the Fourier transform of a distribution f by

⟨f̂ , ϕ⟩ = ⟨f, ϕ̂⟩.

For any multi-index α ∈ Nd, the derivative of the order α of a distribution f is defined by

⟨∂αf, ϕ⟩ = (−1)|α|⟨f, ∂αϕ⟩.

The Fourier transform is related to differentiation as follows:

(III.3.4) (∂αf)∧ = i|α|xαf∧.

Denote by St(k,Rd) the Stiefel manifold of all orthonormal k-frames in Rd (i.e., the set of ordered
orthonormal k-tuples of vectors in Rd).

Definition III.3.5 ([11, §3.5]). Let K ⊂ Rd be a convex body. For an orthonormal k-frame
Ξ ∈ St(k,Rd) we define the (d − k)-dimensional parallel section function of K by

AK,Ξ(t) = Hd−k(K ∩ {⟨Ξ⟩⊥ + t1ξ1 + t2ξ2 + . . . + tkξk}), t ∈ Rk.

The following result expresses the derivatives of the parallel section function AK,Ξ in terms of the
Fourier transform of powers of the Minkowski functional.

Lemma III.3.6 ([11, Theorem 3.26]). Let K be an infinitely smooth origin-symmetric convex body
in Rd, 1 ≤ k < d. Then for every orthonormal k-frame Ξ in Rd and every s ∈ N, s ̸= (d − k)/2,

∆sAK,Ξ(0) = (−1)s

2kπk(d − 2s − k)

∫
Sd−1∩⟨Ξ⟩

(∥ · ∥−d+2s+k
K )∧(θ) dθ,

where ∆ :=
∑d

i=1 ∂2/∂x2
i is the Laplace operator on Rd.

III.3.2. Field theory. We adopt the notation and definitions from [17]. Let F [x] denote the ring
of polynomials in a single variable x over a field F .

Definition III.3.7 ([17, §1.4]). If a polynomial f(x) ∈ F [x] factors into linear factors

f(x) = a(x − ζ1)(x − ζ2) · · · (x − ζn)

in an extension field E, that is, if ζ1, ζ2, . . . , ζn ∈ E, we say that f(x) splits in E.

Definition III.3.8 ([17, §1.4]). Let F = {fi(x)}i∈I be family of polynomials over a field F . A
splitting field for F is the smallest extension field E of F such that each fi(x) ∈ F splits over E.

Theorem III.3.9 ([17, Theorem 1.4.1]). Every finite family of polynomials over a field F has a
splitting field.

Definition III.3.10 ([17, §1.5]). Let E/F be a field extension. An element ζ ∈ E is said to be
algebraic over F if ζ is a root of some polynomial over F . An element that is not algebraic over F is
said to be transcendental over F .

Definition III.3.11 ([17, §1.5]). If ζ is algebraic over F , the set of all polynomials with a root at ζ

Iζ := {f(x) ∈ F [x] | f(ζ) = 0}

is a non-zero ideal in F [x] and is therefore generated by a unique monic polynomial, called the minimal
polynomial of ζ over F and denoted by µζ(x).

35



The following theorem characterizes minimal polynomials in a variety of useful ways.

Theorem III.3.12 ([17, Theorem 1.5.1]). Let E/F be a field extension and let ζ ∈ E be algebraic
over F . Then among all polynomials in F [x], the minimal polynomial µζ(x) is:

(1) the unique monic irreducible polynomial µ(x) for which µ(ζ) = 0;
(2) the unique monic polynomial µ(x) of smallest degree for which µ(ζ) = 0;
(3) the unique monic polynomial µ(x) with the property that for f(x) ∈ F [x], f(ζ) = 0 if and only

if µ(x) | f(x).
In other words, µζ(x) is the unique monic generator of the ideal Iζ .

III.3.3. Valued fields. We adopt the notation and definitions from [10, §2].

Definition III.3.13. Let F be a field. A valuation on F is a map v : F → R ∪ {∞} satisfying the
following axioms for all x, y ∈ F :

(1) v(x) = ∞ ⇐⇒ x = 0;
(2) v(xy) = v(x) + v(y);
(3) v(x + y) ≥ min(v(x), v(y)).

As a consequence, we obtain for all x, y ∈ F :
(4) v(1) = 0;
(5) v(x−1) = −v(x);
(6) v(−x) = v(x);
(7) v(x) < v(y) =⇒ v(x + y) = v(x).

An example of a non-trivial valuation is the p-adic valuation on the rational function field F (x),
where p is any irreducible polynomial from F [x], F being an arbitrary field.

Definition III.3.14. Let F be a field. For every irreducible polynomial p ∈ F [x], the p-adic
valuation on the rational function field F (x) is defined by

vp

(
pν f

g

)
= ν,

where ν ∈ Z and f, g ∈ F [x] \ {0} are not divisible by p.

Note that vp restricted to F is trivial. There is one more interesting valuation on F (x), trivial on
F .

Definition III.3.15. Let F be a field. The degree valuation on the rational function field F (x) is
defined by

v∞

(
f

g

)
= deg g − deg f,

where f, g ∈ F [x] \ {0}.

Interestingly enough, there are no valuations on F [x] other than the ones just mentioned, assuming
triviality on F (cf. [10, Theorem 2.1.4]).

Definition III.3.16. Let F be a field. A subring O of F satisfying x ∈ O or x−1 ∈ O for all
x ∈ F \ {0} is called a valuation ring of F .

The following is a direct consequence of Chevalley’s Theorem [10, Theorem 3.1.1]:

Theorem III.3.17 ([10, Theorem 3.1.2]). Let F2/F1 be a field extension and let O1 ⊆ F1 be a
valuation ring. Then there is an extension O2 of O1 in F2.
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In particular, it means that any valuation v on a field F always admits at least one extension to
every field E containing F .

III.4. Proof of main theorem

Let us begin with the following regularity lemma:

Lemma III.4.1. Let K ⊆ Rd be a convex body with an infinitely smooth boundary ∂K. If the
k-dimensional isotropic volume function of K satisfies (III.2.5) with a1, a2, . . . , an being linearly inde-
pendent, then b1, b2, . . . , bn are infinitely smooth in some neighborhood of t = 0.

Proof. Since a1, a2, . . . , an are linearly independent, there exist H1, H2, . . . , Hn ∈ Gr(k,Rd) such
that the alternant matrix

A :=


a1(H1) a2(H1) · · · an(H1)
a1(H2) a2(H2) · · · an(H2)

...
... . . . ...

a1(Hn) a2(Hn) · · · an(Hn)


is invertible. By definition, for every t ∈ [0, ∞) we have v(t) = A · b(t), where

v(t) :=


VK,H1(t)
VK,H2(t)

...
VK,Hn(t)

 , b(t) :=


b1(t)
b2(t)

...
bn(t)

 .

Now, it follows that b(t) = A−1 · v(t) is infinitely smooth in some neighborhood of t = 0 because so is
v(t). This concludes the proof. □

Let us also rephrase Lemma III.3.6 in an equivalent, coordinate-free way:

Proposition III.4.2. Let K be an infinitely smooth origin-symmetric convex body in Rd, 1 ≤ k < d.
Then for every k-dimensional linear subspace H ∈ Gr(k,Rd) and every s ∈ N, s ̸= (d − k)/2,

V
(2s+k)

K,H (0) = C(d, s, k)
∫
Sd−1∩H

(∥ · ∥−d+2s+k
K )∧(θ) dθ,

where C(d, s, k) is a non-zero constant.

Proof. Let Ξ ∈ St(k,Rd) be an orthonormal basis of H. Clearly, we have

VK,H(t) =
∫
Bk(t)

AK,Ξ(u) du,

so by [16, Theorem 3] the k-dimensional isotropic volume function admits the series expansion of the
form

VK,H(t) = ωk

s∑
i=0

∆iAK,Ξ(0)
2ii!

∏i
j=1(2j + k)

t2i+k + o(t2s+k),

where ωk denotes the volume of the unit ball in k dimensions. In particular, we get

V
(2s+k)

K,H (0) = ωk
∆sAK,Ξ(0)

2ss!
∏s

j=1(2j + k) (2s + k)!,

which further by Lemma III.3.6 equals

ωk
1

2ss!
∏s

j=1(2j + k) (2s + k)! (−1)s

2kπk(d − 2s − k)

∫
Sd−1∩H

(∥ · ∥−d+2s+k
K )∧(θ) dθ

for every s ∈ N, s ̸= (d − k)/2. This concludes the proof. □
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Finally, we are ready to prove the main theorem.

Proof of Theorem III.2.6. The proof will consist of three clearly outlined parts. Firstly, using
simple linear algebra, we will reduce the problem to solving an abstract system of polynomial equations.
Secondly, using more sophisticated tools of valuation theory, we will eventually characterize its solutions.
Finally, we will check the solutions by plugging them into the original problem.

III.4.1. Constructing the system of polynomial equations. Suppose that K is locally k-
separably integrable. Without loss of generality, we may assume that the functions a1, a2, . . . , an are
linearly independent. In light of Lemma III.4.1, differentiating (III.2.5) with respect to t yields

(III.4.3) V
(2s+k)

K,H (0) =
n∑

i=1
ai(H)b(2s+k)

i (0)

for every s ∈ N. Observe that the right-hand sides of (III.4.3) span a finite-dimensional subspace of
C(Gr(k,Rd),R) of dimension not greater than n. Indeed, they are linear combinations of a finite set of
functions a1, a2, . . . , an. Hence also the left-hand sides of (III.4.3) for all s ∈ N span a finite-dimensional
subspace of C(Gr(k,Rd),R). It follows that for every s ∈ N there exist scalars cs,0, cs,1, . . . , cs,n, not all
zero, such that

(III.4.4)
n∑

i=0
cs,iV

(2s+2i+k)
K,H (0) = 0.

By virtue of Proposition III.4.2, for every s ≥ ⌈d/2⌉ this reads∫
Sd−1∩H

n∑
i=0

c̃s,i(−1)i(∥ · ∥−d+2s+2i+k
K )∧(θ) dθ = 0,

where
c̃s,i := (−1)ics,iC(d, s + i, k).

It means precisely that the k-dimensional spherical Radon transform (cf. [11, §2.3]) of the integrand is
zero for every H ∈ Gr(k,Rd). Since K is origin-symmetric, the integrand is an even function, whence

(III.4.5)
n∑

i=0
c̃s,i(−1)i(∥ · ∥−d+2s+2i+k

K )∧(θ) = 0

for every θ ∈ Sd−1 (cf. [11, Corollary 3.10]). Further, using the simple fact that

(∥ · ∥−d+2s+2i+k
K )∧(θ) = td(∥t · ∥−d+2s+2i+k

K )∧(tθ) = t2s+2i+k(∥ · ∥−d+2s+2i+k
K )∧(tθ)

(cf. [11, Lemma 2.21]) we can rewrite (III.4.5) in the form
n∑

i=0
c̃s,i(−1)it2s+2i+k(∥ · ∥−d+2s+2i+k

K )∧(tθ) = 0.

Dividing both sides by t2s+k and using ∥θ∥2 = 1 yields
n∑

i=0
c̃s,i(−1)i∥tθ∥2i

2 (∥ · ∥−d+2s+2i+k
K )∧(tθ) = 0.

By the differentiation property of the Fourier transform (III.3.4), we get
n∑

i=0
c̃s,i(∆i∥ · ∥−d+2s+2i+k

K )∧(tθ) = 0,
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It follows that the Fourier transform of the distribution

(III.4.6)
n∑

i=0
c̃s,i∆i∥ · ∥−d+2s+2i+k

K

is supported at the origin, in which case it is a polynomial (cf. [18, §7.16]). Denote this polynomial by
Ps and observe that it is homogeneous of degree −d + 2s + k.

Claim III.4.7. For any multi-index α ∈ Nd, m ∈ Z and any infinitely smooth function f : Rd → R
we have

∂αfm = Qm
α ({∂βf : β ≤ α})fm−|α|,

where Qm
α is a polynomial depending on m only through its coefficients. Moreover,

Qm
α ({∂βf : β ≤ α}) = m|α|(∇f)α + O(m|α|−1),

where (∇f)α denotes a multi-index power of the vector ∇f ∈ Rd. In particular, we have

∆ifm = Q̃m
i ({∂βf : |β| ≤ 2i})fm−2i

and
Q̃m

i ({∂βf : |β| ≤ 2i}) = m2i∥∇f∥2i
2 + O(m2i−1),

where Q̃m
i is again a polynomial depending on m only through its coefficients and ∥∇f∥2 denotes the

Euclidean norm of the vector ∇f ∈ Rd. ■

Since the proof is a tedious but conceptually straightforward induction on |α|, we leave it to the
reader.

Applying Claim III.4.7 to (III.4.6) yields
n∑

i=0
c̃s,i∆i∥ · ∥−d+2s+2i+k

K =
n∑

i=0
c̃s,iQ̃

−d+2s+2i+k
i ({∂β∥x∥K : |β| ≤ 2i})∥x∥−d+2s+k

K .

Thus finally for every s ≥ ⌈d/2⌉ and x ∈ Rd \ {0} we obtain

(III.4.8)
n∑

i=0
c̃s,iQ̃

−d+2s+2i+k
i ({∂β∥x∥K : |β| ≤ 2i}) = Ps(x)∥x∥d−2s−k

K ,

where c̃s,i are constants, Q̃−d+2s+2i+k
i are polynomials that depend on s only through their coefficients

and Ps is a homogeneous polynomial of degree −d + 2s + k.

Claim III.4.9. All but finitely many polynomials Ps, s ≥ ⌈d/2⌉, are non-zero unless K is a Euclidean
ball. Indeed, suppose that there exists an increasing sequence (sj)j∈N such that Psj

= 0 for every j ∈ N.
Then (III.4.8) reads

n∑
i=0

c̃sj ,iQ̃
−d+2sj+2i+k
i ({∂β∥x∥K : |β| ≤ 2i}) = 0.

It follows immediately from Claim III.4.7 that

(III.4.10)
n∑

i=0
c̃sj ,is

2i
j

(∥∥∇∥x∥K

∥∥2i

2 + O(s−1
j )
)

= 0.

Denote by γj :=
[
c̃sj ,0 : c̃sj ,1s2

j : . . . : c̃sj ,ns2n
j

]
∈ RPn the homogeneous vector of coefficients on the left-

hand side of (III.4.10). Since the projective space is compact, after passing to a subsequence, we may
assume without loss of generality that γj converges to some γ∗ ∈ RPn as j goes to infinity. That being
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so, the limiting case of (III.4.10) yields

(III.4.11)
n∑

i=0
γ∗,i

∥∥∇∥x∥K

∥∥2i

2 = 0.

Now, as
∥∥∇∥x∥K

∥∥
2 is continuous and satisfies a polynomial equation with constant coefficients, it must

itself be constant, which gives rise to an eikonal equation of the form
∥∥∇∥x∥K

∥∥
2 = r−1, x ∈ Rd \ {0},

where r > 0 (cf. [19, Proposition 2.1]). However, in this special case, for x ∈ ∂K we may simply write

[20, (1.39)] ∇∥x∥K = hK(uK(x))−1uK(x),

where uK : ∂K → Sd−1 is the spherical image map of K [20, §2.5] and hK : Rd → R is the support
function of K [20, §1.7.1]. Hence hK(u) = r for all outer unit normal vectors u in the spherical image
of K. But since uK is surjective, it follows that

K = {x ∈ Rd | ⟨x, u⟩ ≤ hK(u) for all u ∈ Sd−1} = {x ∈ Rd | ⟨x, u⟩ ≤ r for all u ∈ Sd−1} = Bd(r),

whence K is indeed a Euclidean ball. □

Remark. By repeating essentially the same argument, we may see that the left-hand side of (III.4.11)
restricted to ∂K is a uniform limit of a certain sequence of homogeneous polynomials. However, since
multivariate homogeneous polynomials are dense in the family of continuous even functions on ∂K [14],
this observation does not yield any further constraints.

Note that the set of monomials (i.e., power products) depending on x that appear on the left-
hand sides of (III.4.8) is finite. In particular, the left-hand sides of (III.4.8) span a finite-dimensional
subspace of C(Rd,R) and thus so do also the right-hand sides. The set of their non-trivial zero linear
combinations forms an infinite system of polynomial equations for ∥x∥−2

K with polynomial coefficients.
We will investigate it in the next section.

III.4.2. Solving the system of polynomial equations. Denote by N ∈ N the dimension of the
subspace of C(Rd,R) spanned by {Ps(x)∥x∥d−2s−k

K }s≥⌈d/2⌉ and let ∥x∥−2
K := ζ. Then for any tuple of

indices (si)0≤i≤N there exists a tuple of coefficients (ci)0≤i≤N such that
N∑

i=0
ciPsi

(x)∥x∥d−2si−k
K = 0.

After dividing both sides by ∥x∥d−k
K , the above equation reads

(III.4.12)
N∑

i=0
ciPsi

(x)ζsi = 0,

which is an example of a polynomial equation for ζ with coefficients in the ring R[x] of polynomials in
x ∈ Rd. However, it is usually easier to consider polynomial equations over a field, of which we will soon
take advantage.

In particular, ζ is algebraic over the field R(x) of rational functions in x ∈ Rd and thus it has a
minimal polynomial of the form

µζ(λ) = µζ,0 + µζ,1λ + . . . + µζ,m−1λm−1 + λm,

where µζ,i ∈ R(x) and m = [R(x, ζ) : R(x)] is the degree of a field extension. Recall that the simple
algebraic extension R(x, ζ)/R(x) is a finite-dimensional vector space over R(x). In fact, the set B =
{1, ζ, . . . , ζm−1} is a vector space basis for R(x, ζ) over R(x) (cf. [17, Theorem 2.4.1]). The multiplication
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map Tζ : R(x, ζ) → R(x, ζ) is an R(x)-linear operator on R(x, ζ) defined by Tζ(α) = ζα. The matrix of
Tζ with respect to the ordered basis B has the form

[Tζ ]B =



−µζ,0

1 −µζ,1

1 −µζ,2
. . . ...

1 −µζ,m−1


and the characteristic polynomial of [Tζ ]B is precisely the minimal polynomial µζ (cf. [17, The-
orem 8.1.1]). The well-known Cayley-Hamilton theorem implies that µζ([Tζ ]B) = 0 and therefore
f([Tζ ]B) = 0 for any polynomial f ∈ Iζ , which follows from Theorem III.3.12. In particular, for ev-
ery linear combination (III.4.12) we have

N∑
i=0

ciPsi [Tζ ]si

B = 0.

Lemma III.4.13. Let X, Y be real vector spaces and let {xi}i∈I ⊆ X, {yi}i∈I ⊆ Y be sets of vectors.
Then there is a linear map f : X → Y such that f(xi) = yi for each i ∈ I if and only if for all finite
subsets J ⊆ I and sets of scalars {aj}j∈J ⊆ R such that

∑
j∈J ajxj = 0 the equality

∑
j∈J ajyj = 0

holds.

Since the proof is an easy exercise from linear algebra, we leave it to the reader.

Now, it follows from Lemma III.4.13 that there exists an R-linear map f : C(Rd,R) → R(x)m×m

such that f(Psζs) = Ps[Tζ ]sB for each s ≥ ⌈d/2⌉. In particular, the rank-nullity theorem implies

dim(span({Ps[Tζ ]sB}s≥⌈d/2⌉)) = dim(span({f(Psζs)}s≥⌈d/2⌉)) ≤ dim(span({Psζs}s≥⌈d/2⌉)) = N,

whence {Ps[Tζ ]sB}s≥⌈d/2⌉ span a finite-dimensional subspace of R(x)m×m. Therefore the problem has
been reduced to a question about rational functions, to which we can now apply the theory of valued
fields.

Claim III.4.14. Let L/K be a field extension and let v : L → R ∪ {∞} be a valuation on L, trivial
on K. Suppose that {xi}i∈I ⊆ L is a subset of L such that {v(xi)}i∈I ⊆ R are pairwise different. Then
{xi}i∈I is K-linearly independent. For suppose that there exists a finite subset J ⊆ I and a set of
scalars {aj}j∈J ⊆ K such that

∑
j∈J ajxj = 0. Since v(ajxj) = v(aj) + v(xj) = v(xj) are again pairwise

different, we have

∞ = v(0) = v

∑
j∈J

ajxj

 = min
j∈J

v(xj),

which reads v(xj) = ∞ for all j ∈ J , a contradiction. In particular, if {xi}i∈I span a finite-dimensional
K-linear space, then the set {v(xi)}i∈I is necessarily finite. □

Let p ∈ R[x] be any irreducible polynomial and denote by v̂p some extension of the p-adic valua-
tion on R(x) to the splitting field of µζ , i.e., the smallest extension of R(x) containing all eigenvalues
λ1, λ2, . . . , λm of [Tζ ]B. Now, observe that at least one of the coefficients µζ,m−i, i = 1, 2, . . . , m is non-
zero. Otherwise, the minimal polynomial µζ would be reducible, a contradiction. Let µζ,m−i be some
non-zero coefficient of µζ . By Viète’s formulas for µζ we have

µζ,m−i = (−1)i
∑

1≤α1<α2<...<αi≤m

λα1λα2 · · · λαi .
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In particular,

vp(µζ,m−i) = v̂p

(−1)i
∑

1≤α1<α2<...<αi≤m

λα1λα2 · · · λαi


≥ min

1≤α1<α2<...<αi≤m
v̂p(λα1λα2 · · · λαi)

= min
1≤α1<α2<...<αi≤m

v̂p(λα1) + v̂p(λα2) + . . . + v̂p(λαi),

whence there exists an eigenvalue λ of [Tζ ]B such that v̂p(λ) ≤ vp(µζ,m−i)/i. Without loss of generality we
may reorder the eigenvalues so that v̂p(λ1), v̂p(λ2), . . . , v̂p(λj) ≤ v̂p(λ) and v̂p(λj+1), v̂p(λj+2), . . . , v̂p(λm) >

v̂p(λ) for some 1 ≤ j ≤ m. Denote by

χ[Tζ ]s
B

(λ) := det(λI − [Tζ ]sB)

the characteristic polynomial of [Tζ ]sB. Since the eigenvalues of [Tζ ]sB are precisely λs
1, λs

2, . . . , λs
m, again

by Viète’s formulas for χ[Tζ ]s
B

we have

(III.4.15) χ[Tζ ]s
B,m−j = (−1)j

∑
1≤α1<α2<...<αj≤m

λs
α1

λs
α2

· · · λs
αj

,

where χ[Tζ ]s
B,m−j stands for the coefficient of λm−j . This time we know, however, that λs

1λs
2 · · · λs

j attains
the smallest valuation among all summands on the right-hand side of (III.4.15), whence

vp(χ[Tζ ]s
B,m−j) = v̂p(λs

1λs
2 · · · λs

j) = s(v̂p(λ1) + v̂p(λ2) + . . . + v̂p(λj)) ≤ jsvp(µζ,m−i)/i.

On the other hand, using the fact that χ[Tζ ]s
B,m−j may be computed as the sum of all principal minors of

[Tζ ]sB of size j and each of those minors may itself be computed as the sum of products of certain entries
of the matrix [Tζ ]sB of length j, it follows that

vp(χ[Tζ ]s
B,m−j) ≥ jvp([Tζ ]sB),

where vp(M) denotes the minimum of valuations taken over all entries of a matrix M . Chaining those
two inequalities yields

vp([Tζ ]sB) ≤ svp(µζ,m−i)/i

and consequently
vp(Ps[Tζ ]sB) ≤ vp(Ps) + svp(µζ,m−i)/i.

Finally, by Claim III.4.14 we have vp(Ps[Tζ ]sB) = O(1), which implies

(III.4.16) vp(Ps) ≥ −svp(µζ,m−i)/i + O(1).

Claim III.4.17. Since ζ is homogeneous of degree −2, the coefficient µζ,m−i is homogeneous of degree
−2i for every 1 ≤ i ≤ m. Indeed, for every t ̸= 0 and x ∈ Rd we have

0 = t−2mµζ(ζ(x))

= t−2mµζ(t2ζ(tx))

= t−2mµζ,0(x) + t−2m+2µζ,1(x)ζ(tx) + . . . + t−2µζ,m−1(x)ζ(tx)m−1 + ζ(tx)m

= t−2mµζ,0(t−1y) + t−2m+2µζ,1(t−1y)ζ(y) + . . . + t−2µζ,m−1(t−1y)ζ(y)m−1 + ζ(y)m,

where y := tx. Recall that µζ is the unique monic polynomial of degree m with root at ζ, which implies

t−2iµζ,m−i(t−1y) = µζ,m−i(y)

for every 1 ≤ i ≤ m. □
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Since R(x) is the field of fractions of a unique factorization domain, there is a system of irreducible
polynomials P ⊂ R[x] such that every non-zero element f ∈ R(x) admits a unique representation

(III.4.18) f = u
∏
p∈P

pvp(f),

where u ∈ R\{0} is invertible and the integral exponents vp(f) ∈ Z are non-zero for only a finite number
of elements p ∈ P. This representation may be viewed as an analog of the product formula for rational
numbers. Computing the degree valuation of both sides of (III.4.18) yields

(III.4.19) v∞(f) = −
∑
p∈P

vp(f) deg p.

Denote by Pm−i ⊂ P the finite subset of all irreducible polynomials p ∈ P such that vp(µζ,m−i) ̸= 0.
From our considerations so far, it follows that

−d + 2s + k = −v∞(Ps)
(III.4.19)=

∑
p∈P

vp(Ps) deg p

≥
∑

p∈Pm−i

vp(Ps) deg p

(III.4.16)
≥

∑
p∈Pm−i

−svp(µζ,m−i) deg p/i + O(1)

(III.4.19)= sv∞(µζ,m−i)/i + O(1)
Claim III.4.17= 2s + O(1)

for every non-zero µζ,m−i. Hence all the inequalities used above actually must be equalities up to some
bounded error term. Thus

(III.4.20) vp(Ps) = −svp(µζ,m−i)/i + O(1)

for every p ∈ P. Now, observe that µζ,0 ̸= 0, because otherwise µζ would be reducible. That being so,
for every p ∈ P and every non-zero µζ,m−i we have

−svp(µζ,m−i)/i + O(1) = vp(Ps) = −svp(µζ,0)/m + O(1),

whence asymptotically (as s goes to infinity) we get

vp(µζ,m−i)/i = vp(µζ,0)/m.

By the product formula (III.4.18), it means that µζ,m−i and µ
i/m
ζ,0 are associated, i.e.,

µζ,m−i = um−iµ
i/m
ζ,0

for some unit um−i ∈ R \ {0}. On the other hand, if µζ,m−i = 0, the same equality holds if we simply
put um−i := 0. Thus

0 = µ−1
ζ,0µζ(ζ)

= u0 + u1µ
−1/m
ζ,0 ζ + . . . + um−1µ

−(m−1)/m
ζ,0 ζm−1 + µ−1

ζ,0ζm

= u0 + u1

(
µ

−1/m
ζ,0 ζ

)
+ . . . + um−1

(
µ

−1/m
ζ,0 ζ

)m−1
+
(

µ
−1/m
ζ,0 ζ

)m

is a polynomial equation with constant coefficients satisfied by µ
−1/m
ζ,0 ζ, which therefore must itself be

constant, equal to some r ∈ R. Finally, since vp(Ps) ≥ 0 for every p ∈ P, it follows from (III.4.20) that
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vp(µζ,0) ≤ 0, which means that

(III.4.21) ∥x∥K = ζ−1/2 = (rmµζ,0)−1/(2m)

is a root of order 2m of some homogeneous polynomial (rmµζ,0)−1 of degree 2m.

III.4.3. Filtering out the incidental solutions. Although (III.4.21) already imposes a rigid
structure on the Minkowski functional ∥x∥K , it does not solve the problem immediately. Indeed, this
condition is satisfied, e.g., when K is the unit ball in ℓd

2m. Moreover, for every Minkowski functional
satisfying (III.4.21) we can easily find a sequence of polynomials Ps such that {Ps(x)∥x∥d−2s−k

K }k∈N

span a finite-dimensional subspace of C(Rd,R). Therefore we need to go back to the very beginning of
our argument to get the desired contradiction.

Slightly abusing the notation, let ∥x∥K := ζ with ζ2m := h(x) being a homogeneous polynomial of
degree 2m. Without loss of generality, we may assume that h is not a perfect power. Then A := R(x, ζ)
may be viewed as a graded algebra

A =
⊕

i∈C2m

Ai, Ai := R(x)ζi,

where the index set is the cyclic group C2m.

Claim III.4.22. The Laplace operator ∆ defines a graded endomorphism of A, i.e., for every function
f ∈ Ai, i ∈ C2m, we have ∆f ∈ Ai. Indeed, for f := ghν , where g ∈ R(x) and ν := i

2m , we have

∆f = ∆ghν + 2ν∇g · ∇hhν−1 + νg∆hhν−1 + ν(ν − 1)g∇h · ∇hhν−2

=
(
∆g + 2ν∇g · ∇hh−1 + νg∆hh−1 + ν(ν − 1)g∇h · ∇hh−2)hν .(III.4.23)

Clearly the expression in parentheses is again an element of R(x). □

Remark. Furthermore, it follows from (III.4.23) that vp(∆f) = vp(f)−2 for any generic irreducible
polynomial p ∈ R[x], unless vp(f) ∈ {0, 1}. Indeed, for f := gpν , where g ∈ R(x) is not divisible by p

and ν ∈ Z, we have

∆f =
(
∆gp2 + 2ν∇g · ∇pp + νg∆pp + ν(ν − 1)g∇p · ∇p

)
pν−2.

Now, the expression in parentheses is generally not divisible by p unless p | ∇p · ∇p. In other words, the
dual variety of the projective hypersurface defined by p is contained in the standard hyperquadric. In
particular, for d ≤ 3 there are no such polynomials p with deg p > 2, but already for d = 4 we have e.g.
(III.4.24)

4x8
0 + 28x6

0x2
1 + 16x6

0x2
2 − 20x6

0x2
3 + 73x4

0x4
1 + 124x4

0x2
1x2

2 − 90x4
0x2

1x2
3 − 8x4

0x4
2 + 60x4

0x2
2x2

3 + 33x4
0x4

3

+ 84x2
0x6

1 + 270x2
0x4

1x2
2 − 124x2

0x4
1x2

3 + 180x2
0x2

1x4
2 + 140x2

0x2
1x2

2x2
3 + 60x2

0x2
1x4

3 − 48x2
0x6

2

− 124x2
0x4

2x2
3 − 90x2

0x2
2x4

3 − 20x2
0x6

3 + 36x8
1 + 180x6

1x2
2 − 48x6

1x2
3 + 297x4

1x4
2 + 180x4

1x2
2x2

3 − 8x4
1x4

3

+ 180x2
1x6

2 + 270x2
1x4

2x2
3 + 124x2

1x2
2x4

3 + 16x2
1x6

3 + 36x8
2 + 84x6

2x2
3 + 73x4

2x4
3 + 28x2

2x6
3 + 4x8

3,

obtained as the dual variety to the complete intersection of two hyperquadrics defined by x2
0 +x2

1 +x2
2 +x2

3

and x2
1 + 2x2

2 + 3x2
3. The above example is fairly complicated, and unfortunately, this will always be the

case as long as we believe in the celebrated Hartshorne’s conjecture (cf. [9]). Nevertheless, we showed
that vp(∆f) = vp(f)−2 unless p | ∇p ·∇p, when vp(∆f) ≥ vp(f)−1. The question of whether inequality
may be replaced with equality seems to be hard, and likely the answer in that generality will be negative.
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Having said all that, we are ready to finish the proof. Firstly, suppose that d − k is odd. Going back
as far as (III.4.4), for every s ∈ N there exist scalars cs,0, cs,1, . . . , cs,n, not all zero, such that

n∑
i=0

cs,iV
(2(ms+ d−k+1

2 )+2mi+k)
K,H (0) = 0,

whence the distribution
n∑

i=0
c̃s,i∆mi∥x∥2ms+2mi+1

K =
n∑

i=0
c̃s,i∆mihs+i+ 1

2m =
n∑

i=0
c̃s,i∆mi[hs+iζ]

is a polynomial (cf. (III.4.6)), i.e., the element of A0. On the other hand, by Claim III.4.22, it is also an
element of A1 ̸= A0, in which case it must be zero. It follows from Claim III.4.9 that K is a Euclidean ball.

Secondly, suppose that d − k is even and m > 1. Then for every s ∈ N there exist scalars
cs,0, cs,1, . . . , cs,n, not all zero, such that

n∑
i=0

cs,iV
(2(ms+ d−k+2

2 )+2mi+k)
K,H (0) = 0,

whence the distribution
n∑

i=0
c̃s,i∆mi∥x∥2ms+2mi+2

K =
n∑

i=0
c̃s,i∆mihs+i+ 2

2m =
n∑

i=0
c̃s,i∆mi[hs+iζ2]

is a polynomial, i.e., the element of A0. On the other hand, this time it is also an element of A2 ̸= A0,
in which case it must be zero anyway. Again, it follows that K is a Euclidean ball.

Finally, suppose that d − k is even and m = 1. But then K defined by (III.3.2) is a hyperquadric,
which concludes the proof. □

Remark. Note that, in fact, we proved a much stronger theorem. Indeed, we did not take full
advantage of assumption (III.2.5) (formulated in terms of the space of germs), but instead, we used only
its infinitesimal version (III.4.3) (formulated in terms of the space of jets). The latter, in general, contains
less information unless we restrict ourselves to analytic functions when the two coincide. However, in
order to avoid further complicating an already complicated assumption and thus overshadowing the main
idea, we have deliberately abandoned the formally weaker formulation in favor of a much simpler and
more intuitive one.
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APPENDIX A

Computer assistance in symbolic computations

All functions were implemented in Wolfram Mathematica 11.0.0. The code itself can be found online
at https://cloud.impan.pl/s/1kIXqE87mHVn7nT. Computations were performed on a Linux x86 (64-
bit) machine with a single Intel® Xeon® CPU E5-2697 v3 processor and 64GB memory. The total execution
time was negligible.

A.1. Notebook-1.nb

In the beginning, we use symbolic differentiation D to obtain the Wronskian matrix of (II.3.2).
Afterward, we use Minors to compute 210 symbolic determinants of order 4 and thus find out that the
four rows corresponding to 3rd order partial derivatives are indeed linearly dependent. Then we again
use Minors to compute 11 symbolic determinants of order 10, among which the only non-trivial ones are
W3,0, W2,1, W1,2 and W0,3. Finally, we use Minors to compute 10 symbolic determinants of order 9 and
select the simplest-looking ones. Based on them, we solve some simple linear equations to find out that
all the featured minors can not vanish simultaneously. Performing the same calculations with pen and
paper would be tedious, however possible. Although we sometimes applied Factor to factorize the results,
in all cases the factorization turned out to be trivial.

A.2. Notebook-2.nb

In the beginning, we use symbolic differentiation D to compute the left-hand side of (II.3.8). After-
ward, we use CoefficientArrays to extract the explicit form of the matrix A5 of order 6. Then we apply
Det and Factor to obtain its determinant in the form from which we can readily see that it is an element
of the multiplicative submonoid S. Finally, we repeat the same steps for A4 of order 5 and A3 of order
4. The same calculations could well be done with pen and paper, though it is pointless.

A.3. Notebook-3.nb

At the beginning, we solve the quadratic equation (II.3.1) for f , assuming previously that a33 = 1.
Afterward, we use symbolic differentiation to obtain the explicit formula for δ. Then we use Grad to
compute the Jacobian matrix of δ with respect to the 11-dimensional vector (II.3.10). Now, since its
symbolic determinant is difficult to compute even for a supercomputer, we instantiate the matrix at
(II.3.11) and only then we apply Det and Factor to obtain its determinant of order 11 in the simplest
form. The content of this notebook is by far the most demanding computational task because, in addition
to the heavy workload, it also requires manipulating algebraic expressions containing square roots.

A.4. Notebook-4.nb

In the beginning, we define p1, p2, u, v and verify that u, v satisfy (II.4.2), which requires symbolic
differentiation and manipulating algebraic expressions containing square roots. Afterward, we use Coef-
ficientArrays to extract the explicit form of the matrix A of order 4. Then we apply Det and Together
to obtain its determinant in the simplest form. Further, we solve the quadratic equation (II.3.1) for f

and then put the result into the formula for u + iv. We apply Together and PowerExpand to bring the
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result to a simpler form. Finally, we define the matrix Q of order 4 and verify the formula (II.5.6),
using Minors to compute 16 symbolic determinants of order 3 along the way. Then we apply Together
to force the expansion of the underlying expression. At the very end, we verify Assertion II.5.8, using
symbolic differentiation D composed with Det to obtain the Hessian determinant of f and Discriminant
to compute the discriminant of (II.3.1) with respect to the variable f . Again, we apply Together to force
the expansion of the underlying expression. The same calculations could well be done with pen and
paper, though it is pointless.
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